Пусть вес самого 1-го сплава = х кг, а процентное содержание в нём серебра = у%.определим ,сколько кг серебра было в 1-ом сплаве: .2-ой сплав. вес его равен (х+3) кг. серебра в нём будет , что составляет 90% серебра от веса всего сплава, так как по условию мы получим сплав 900 пробы ( 900 проба серебра значит, что сплав содержит 900 г серебра на 1000 г от всего веса, то есть 90%). то есть с другой стороны серебра во 2 сплаве будет .получим первое уравнение системы: 3 сплав. вес всего сплава равен (х+2) кг. так как добавляли 2 кг серебра 900 пробы, то вес серебра в этих 2 кг будет равен кг . а вес серебра во всём 3-ем сплаве равен .с другой стороны 3-ий сплав будет иметь 840-ую пробу, то есть содержание серебра в 3-ем сплаве равно 84% от веса всего сплава, то есть равно кг .получим второе уравнение системы: решим систему уравнений.получили, что вес первоначального сплава равен 3 кг.этот сплав 80-типроцентный, то есть получили 800-ую пробу сплава,что соответствует частям серебра в трёхгилограммовом сплаве .
Среднеарифметическое двух чисел всегда меньше большого числа на столько же, насколько оно больше меньшего числа. Ну например для чисел и – среднеарифметическое равно и при этом на меньше двадцати пяти и на больше семнадцати.
Когда Вася отдаёт Пете монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на монет меньше изначального, а у Пети на монет больше изначального. А значит, вначале у Васи было на монет больше, чем у Пети.
Путь у Васи вначале монет. Тогда у Пети монет.
В первом случае всё как раз получается правильно:
Во втором случае у Васи-II оказывается монет, а у Пети-II будет монет. При этом у Пети-II монет в раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:
Далее это целочисленное уравнение можно решить двумя
[[[ 1-ый
Чтобы было целым, целой должен быть и результат деления в дроби, а чтобы было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда откуда:
[[[ 2-ой
Чтобы было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет откуда:
2а=0
а=0
Или
а-4=0
а=4
ответ: допустимы все значения переменной, кроме а=0, а=4