Пусть х (км/ч) - скорость лодки в стоячей воде, тогда х + 1 (км/ч) - скорость лодки по течению реки х - 1 (км/ч) - скорость лодки против течения реки
S = v * t - формула пути v = х + 1 + х - 1 = 2х (км/ч) - скорость сближения t = 1,9 (ч) - время в пути S = 98,8 (км) - расстояние между пристанями Подставим все значения в формулу и решим уравнение: 2х * 1,9 = 98,8 3,8х = 98,8 х = 98,8 : 3,8 х = 26 (км/ч) - скорость лодки в стоячей воде; (26 + 1) * 1,9 = 51,3 (км) - расстояние до места встречи, которое пройдёт лодка, плывущая по течению реки; (26 - 1) * 1,9 = 47,5 (км) - расстояние до места встречи, которое пройдёт лодка, плывущая против течения реки. ответ: 26 км/ч; 51,3 км; 47,5 км.
V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
х + 1 (км/ч) - скорость лодки по течению реки
х - 1 (км/ч) - скорость лодки против течения реки
S = v * t - формула пути
v = х + 1 + х - 1 = 2х (км/ч) - скорость сближения
t = 1,9 (ч) - время в пути
S = 98,8 (км) - расстояние между пристанями
Подставим все значения в формулу и решим уравнение:
2х * 1,9 = 98,8
3,8х = 98,8
х = 98,8 : 3,8
х = 26 (км/ч) - скорость лодки в стоячей воде;
(26 + 1) * 1,9 = 51,3 (км) - расстояние до места встречи, которое пройдёт лодка, плывущая по течению реки;
(26 - 1) * 1,9 = 47,5 (км) - расстояние до места встречи, которое пройдёт лодка, плывущая против течения реки.
ответ: 26 км/ч; 51,3 км; 47,5 км.