10k+1
16
1216
Объяснение:
1. Любое натуральное число, которое даёт при делении на 10 остаток 1, можно записать в виде 10k+1, где k − 0;1;2...
2. Для того чтобы узнать, сколько существует таких натуральных чисел, которые не превосходят 160, необходимо рассмотреть арифметическую прогрессию (an), где a1=1,d=10, и n — натуральное число;
(a1=1, так как 1 — натуральное число, и при делении на 10 даёт остаток 1).
an=(n−1)d+a1;(n−1)d+a1≤160;(n−1)⋅10+1≤160;10n−10+1≤160;n≤16910;n≤16,9.
Так как n — натуральное число, то получим n= 16.
3. Остаётся найти сумму всех 16 членов арифметической прогрессии.
Сумму первых n членов арифметической прогрессии можно найти, используя формулу:
Sn=(a1+an)⋅n2, где n — число членов последовательности, и an=a1+(n−1)d.
В заданном случае: n= 16; d= 10; a1=1; a16=10⋅(16−1)+1=151.
Подставив значения в формулу суммы первых n членов арифметической прогрессии, получим:
S16=(a1+an)n2=(1+151)⋅162=1216.
надеюсь, что 5 - это 1-й член прогрессии, используя первый член и разность d , составим формулу этой прогрессии
5 + 7n = An ( из формулы нахождения эннго члена ) и будем подставлять вместо An наши значения : 77, 88, 99 и 110
5 + 7n = 77 7n = 72... n = 10,285n должно быть только натуральное число, никаких дробей, значит число 77 нам не подходит
5 + 7n = 110 7n = 105 n = 15 , ...да! число 15 натуральное! значит 110 нам подходит, в этой прогрессии число 110 стоит под 15 номером. Остальнын не подходят.