вас,знатоков математики,объяснить мне признаки возрастания и убывания функции и как находить производную. Если можно,то вкратце. За неверный ответ и спам бан за понимание,надеюсь на ваш ответ)
Теорема (достаточное условие убывания функции). Если производная дифференцируемой на интервале функции отрицательна на интервале , то функция монотонно убывает на этом интервале. Геометрический смысл этих теорем состоит в том, что на интервалах убывания функции касательные к графику функции образуют с осью тупые углы, а на интервалах возрастания – острые
Вероятность того, что в течение года перегорит не менее трёх ламп равна сумме вероятностей того, что перегорит 3 или 4 лампы. Вероятность того, что перегорит три лампы равна P(3)=0,8^3*0,2=0,1024 Вероятность того, что перегорит три лампы равна P(4)=0,8^4=0,4096 Вероятность того, что в течение года перегорит не менее трёх ламп равна : P(3,4)=0,1024+0,4096=0,512
Вероятность того, что перегорит не более трёх ламп равна разности единицы и вероятности того, что прегорят все четыре лампы. Вероятность того, что не перегорят все 4 лампы равна P(4)=0,8^4=0,4096 Вероятность того, что перегорит не более трёх ламп равна: P(0,1,2,3)=1-0,4096=0,5904
Теорема (достаточное условие убывания функции). Если производная дифференцируемой на интервале функции отрицательна на интервале , то функция монотонно убывает на этом интервале. Геометрический смысл этих теорем состоит в том, что на интервалах убывания функции касательные к графику функции образуют с осью тупые углы, а на интервалах возрастания – острые
Объяснение:
Я пыталась...