Пусть х - цифра десятков;
у - цифра единиц .
По условию цифра десятков, увеличенная на 2, в 2 раза больше цифры единиц.
Исходя из этого, получаем первое уравнение:
х +2 = 2у
Ещё в условии сказано, что если цифры десятков и единиц поменять местами, то полученное число будет меньше первоначального на 27, т.е.
(10х+у) > (10у+х) на 27
Получаем второе уравнение:
(10х+у ) - (10у+х) = 27
Упростим это уравнение:
9х - 9у = 27
х - у = 3
Решаем систему:
{x + 2 = 2y
{x - y = 3
Из второго уравнения выразим х:
х = у + 3
Подставим в первое:
у + 3 + 2 = 2у
у = 5 - цифра единиц
х = 5 + 3
х = 8 - цифра десятков;
ответ: 85
Объяснение:
ax²+bx+c=0
1-я горизонтальная строка.
2·(-1,5)²+b·(-1,5)-6=0
2·(-3/2)² -1,5b-6=0
9/2 -1,5b -12/2=0
-3/2 ·b=3/2; b=3/2 ·(-2/3)=-1
2x²-1x-6=0; D=1+48=49
x₂=(1+7)/4=8/4=2
a=2; b=-1; c=-6; x₁=-1,5; x₂=2
2-я горизонтальная строка.
-3·3²-7·3+c=0
-3·9-21+c=0
-27-21+c=0; c=48
-3x²-7x+48=0 |×(-1)
3x²+7x-48=0; D=49+576=625
x₂=(-7-25)/6=-32/6=-16/3=-5 1/3
a=-3; b=-7; c=48; x₁=3; x₂=-5 1/3
3-я горизонтальная строка.
5·0,6²+8·0,6+c=0
5·(3/5)²+8·3/5 +c=0
9/5 +24/5 +c=0; c=-33/5=-6,6
5x²+8x -33/5=0; D=64+132=196
x₁=(-8-14)/10=-22/10=-2,2
a=5; b=8; c=-6,6; x₁=-2,2; x₂=0,6