М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nazipovadk
nazipovadk
29.03.2022 17:00 •  Алгебра

Найдите промежутки возрастания и убывания функции у=х4-6х2+8
у=125х5-х
у=-0,2х5+х

👇
Открыть все ответы
Ответ:
YaShKa111111
YaShKa111111
29.03.2022

б) если рассмотреть равенство: x² + (y+1)² = 4

то график этого уравнения --это окружность с центром в (0; -1) радиуса 2.

уравнение окружности с центром (x₀; y₀) радиуса R: (х-х₀)² + (y-y₀)² = R²

в задании знак неравенства "больше", т.е. это часть плоскости ВНЕ круга, включая границу (окружность)

например: точка (2;-3)

2² + (-3+1)² ≥ 4 верно...

а) неравенство с модулем со знаком "меньше" равносильно двойному неравенству: -2 < y-x-1 < 2 (прибавим 1)

-1 < y-x < 3

двойное неравенство равносильно системе неравенств (пересечению промежутков):

{y-x<3

{y-x>-1

или 

{ y < x+3 (часть плоскости НИЖЕ (знак "<") прямой у=х+3)

{ y > x-1 (часть плоскости ВЫШЕ (знак ">") прямой у=x-1) 

это полоса между параллельными прямыми...

и всегда можно проверить...

например, точка (2;-1) не принадлежит этому множеству... 

|-1-2-1| < 2 неверно 

точка (0;0) принадлежит этому множеству... 

|0-0-1| < 2 верно

4,7(24 оценок)
Ответ:
LaimZ
LaimZ
29.03.2022
Функцию у = f(x), х є Х, называют четной, если для любого значения х из множества X выполняется равенство f (-х) = f (х). Определение 2. Функцию у = f(x), х є X, называют нечетной, если для любого значения х из множества X выполняется равенство f (-х) = -f (х). Пример 1. Доказать, что у = х4 — четная функция. Решение. Имеем: f(х) = х4, f(-х) = (-х)4. Но (-х)4 = х4. Значит, для любого х выполняется равенство f(-х) = f(х), т.е. функция является четной. Аналогично можно доказать, что функции у — х2,у = х6,у — х8 являются четными. Пример 2. Доказать, что у = х3~ нечетная функция. Решение. Имеем: f(х) = х3, f(-х) = (-х)3. Но (-х)3 = -х3. Значит, для любого х выполняется равенство f (-х) = -f (х), т.е. функция является нечетной. Аналогично можно доказать, что функции у = х, у = х5, у = х7 являются нечетными. Мы с вами не раз уже убеждались в том, что новые термины в математике чаще всего имеют «земное» происхождение, т.е. их можно каким-то образом объяснить. Так обстоит дело и с четными, и с нечетными функциями. Смотрите: у — х3, у = х5, у = х7 — нечетные функции, тогда как у = х2, у = х4, у = х6 — четные функции. И вообще для любой функции вида у = х" (ниже мы специально займемся изучением этих функций), где n — натуральное число, можно сделать вывод: если n — нечетное число, то функция у = х" — нечетная; если же n — четное число, то функция у = хn — четная. Существуют и функции, не являющиеся ни четными, ни нечетными. Такова, например, функция у = 2х + 3. В самом деле, f(1) = 5, а f (-1) = 1. Как видите, здесь Функция Значит, не может выполняться ни тождество f(-х) = f (х), ни тождество f(-х) = -f(х). Итак, функция может быть четной, нечетной, а также ни той ни другой.
4,5(50 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ