М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
777alisham
777alisham
03.01.2023 11:47 •  Алгебра

НУЖЕН ОТВЕТ сократить дробь 125 x^2y^3/15x^2y^4 ​

👇
Ответ:
ffplfref
ffplfref
03.01.2023

1/15у

Объяснение:

1/15у

4,7(96 оценок)
Открыть все ответы
Ответ:
TamaraKengurs
TamaraKengurs
03.01.2023

1) Интегрируем обе части: y' = \dfrac{1}{5}e^{5x}+\sin x-\dfrac{x^4}{2}+C_{1}. Поскольку y'(0) = 1/5, то 1/5 = 1/5+0-0+C_{1} \Leftrightarrow C_{1} = 0. Интегрируем еще раз: y = \dfrac{1}{25}e^{5x}-\cos x - \dfrac{x^{5}}{10}+C_{2}. Но поскольку y(0) = -1, то -1 = 1/25-1+C_{2} \Leftrightarrow C_{2} = -1/25. Следовательно, ответ: \boxed{y = \dfrac{1}{25}e^{5x}-\cos x-\dfrac{x^{5}}{10}-\dfrac{1}{25}}

2) Сделаем замену y' = z. Тогда xz'\ln x = z\stackrel{z=0\text{ solution}}{\to} \dfrac{dz}{z}=\dfrac{dx}{x\ln x} = \dfrac{d(\ln x)}{\ln x} \Rightarrow \ln|z| = \ln|\ln x|+\overline{C}\Rightarrow |z| = e^{\overline{C}}|\ln x| \Leftrightarrow z = \tilde{C}\ln x

После обратной замены: y = \displaystyle \int \widetilde{C}\ln x dx \stackrel{dv=dx,\ u=\ln x}{=} \widetilde{C}\left(x\ln x-\int x\cdot \dfrac{1}{x}dx\right) =\boxed{ \widetilde{C}(x\ln x - x+C)}

3) Здесь снова делаем замену z=y'. Тогда z' -z = 8x^2e^{x}. Решаем однородное уравнение: z' - z = 0 \Leftrightarrow \dfrac{dz}{dx} = z \to\dfrac{dz}{z} = dx \to \ln |z| = x+\widetilde{C} \to z = Ce^{x}. Применяем метод вариации постоянной, то есть ищем решение в виде C(x)e^{x}: C'(x)e^{x}+C(x)e^{x} - C(x)e^{x} = 8x^2e^{x} \Leftrightarrow C'(x) = 8x^2 \Leftrightarrow C(x) = \dfrac{8}{3}x^{3}+\overline{C}. Значит, z = \left(\dfrac{8}{3}x^{3}+\overline{C}\right)e^{x} = y'. Здесь просто интегрируем. Чтобы не делать несколько раз интегрирование по частям, можно понять, что первообразная x^{3}e^{x} имеет вид P(x)e^{x}, где P(x) -- некоторый полином. Тогда (P(x)e^{x})' = (P(x))'e^{x}+P(x)e^{x} = x^{3}e^{x} \Leftrightarrow (P(x))' +P(x) = x^{3}, то есть по сути, требуется решить еще один диффур, но можно поступить проще: P(x) = \sum\limits_{j=0}^{n}a_{n-j}x^{n-j};\; a_{n}x^{n}+(na_{n}+a_{n-1})x^{n-1}+\ldots + (2a_{2}+a_{1})x+a_{1}+a_{0}=x^{3}, откуда n=3,\;a_{n=3}=1,\; 3+a_{2} = 0,\; -6+a_{1}=0,\;6+a_{0}=0, следовательно, P(x) = x^{3}-3x^2+6x-6. Имеем: y = \dfrac{8}{3}C_{1}e^{x}+\dfrac{8}{3}(x^{3}-3x^2+6x-6)e^{x}+C_{2} = \boxed{\dfrac{8}{3}e^{x}(x^3-3x^2+6x-6+C_{1})+C_{2}}, где C_{1} = \dfrac{3}{8}\overline{C}.

4,6(43 оценок)
Ответ:
DeNcHiK123st
DeNcHiK123st
03.01.2023
Для нахождения точек пересечения с осью Х
 x^4-4x^2=0
х1=0; х2=2;  х3=-2;
Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0
f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0
Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2)
теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум
     -2^0.5    0        2^0.5
---*---о*о*---о*--
  -2       -1          1        2

x=0 => y= 0
x=-2^0.5 => y= -4
x=2^0.5  => y= -4

x=-2 => y= 0
x=-1 => y=-3  
x=1 => y=-3
x=2 => y= 0

Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно  f(-2^0.5) минимум.
Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1  убывает от 0 до -3 следовательно  f(0) максимум.
Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно  f(2^0.5) минимум.

Исследование завершено
Точки пересечения с осью Х
х1=0; х2=2;  х3=-2;
Минимум
(-2^0.5;-4) и (2^0.5;-4)
Максимум
(0;0)
4,8(46 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ