Для графа G=(Y, V) построить матрицы смежностей и инциденций, и по матрице смежностей – матрицу достижимостей, выделить связные (сильные) компоненты, и построить конденсацию графа. Найти число путей длиной 3 из Y6 в Y2
(2^2)^5 / 2^9 * 3^2 = 2^10/2^9 * 3^2 =2^1 * 3^2 = 2^1 * 3^1 * 3^1 = 18^1=18. 1) При возведении степени в степень - основание остается прежним, показатели степени перемножаются. 2) При делении чисел с одинаковыми основаниями , но разными показателями степени - основание остается, а показатели степени вычитаются. При делении чисел с разными основаниями, но одинаковыми показателями степени - основание - это частное от деления чисел, а показатель степени остается. 3) При умножении чисел с одинаковыми основаниями и разными степенями, основание остается, степени складываются; при умножении чисел с разными основаниями, но одинаковыми степенями - основания перемножаются, степень остается.
24 минуты = 24/60 часа = 4/10 часа = 0,4 часа. Пусть х - намеченная скорость. Тогда х-10 - сниженная скорость. 4х - расстояние между городами. 2х - длина части пути, пройденная с намеченной скоростью. 4х-2х - длина части пути, пройденная со сниженной скоростью. (4х-2х)/(х-10)- время, затраченное на часть пути со сниженной скоростью. Уравнение: 2 + (4х-2х)/(х-10) = 4 + 0,4 2 + 2х/(х-10) = 4,4 2х/(х-10) = 4,4-2 2х/(х-10) = 2,4 2х = 2,4(х-10) 2х = 2,4х - 24 2,4х-2х = 24 0,4х = 24 х = 24:0,4 х = 60 км/ч - первоначальная скорость автомобиля. ответ: 60 км/ч.
Проверка: 1) 60•4=240 км - расстояние между городами. 2) 2•60 = 120 км - длина пути, пройденная с намеченной скоростью. 3) 60-10=50 км/ ч - сниженная скорость. 4) 2+0,4 = 2,4 часа время езды со сниженной скоростью. 5) 50•2,4 = 120 км - длина пути, пройденная со сниженной скоростью. 6) 120+120=240 км - длина всего пути.