Составьте приведённое квадратное уравнение, сумма корней которого равна –10, а произведение — числу 8. Диагональ прямоугольника на 8 см больше одной из его сторон и на 4 см больше другой. Найдите стороны прямоугольника. monorag r2 +7х + c = 0.
чертим систему координат, ставим стрелки в положительных направлениях (вверх и вправо), подписываем оси вправо х, вверх - у, отмечаем начало координат - точку О, отмечаем по каждой оси единичный отрезок в 1 клеточку.
Переходим к графикам: у=√х - кривая, проходящая через начало координат - точку О, заполним таблицу: х= 0 1 4 1/4 у= 0 1 2 1/2 Отмечаем точки на плоскости Проводим линию через начало координат и точки , подписываем график у=√х
у=2-х - прямая, для построения нужны две точки, запишем их в таблицу: х= 0 4 у= 2 -2 Отмечаем точки (0;2) и (4;-2) в системе координат и проводим через них прямую линию. Подписываем график у=2-х
Смотрим на точку пересечения двух данных прямых, отмечаем точку М, ищем её координаты, записываем М(1; 1) Всё!
2X^2 - X * ( 2X - 2 ) = 6
2X^2 - 2X^2 + 2X = 6
2X = 6
X = 3
Y = 6 - 2 = 4
ОТВЕТ ( 3 ; 4 )
( X + 2 )*( Y + 1 ) = 12
X + 2Y = 6 ; X = 6 - 2Y
( 6 - 2Y + 2 )*( Y + 1 ) = 12
( 8 - 2Y )*( Y + 1 ) = 12
8Y + 8 - 2Y^2 - 2Y = 12
- 2Y^2 + 6Y - 4 = 0
- 2 * ( Y^2 - 3Y + 2 ) = 0
D = 9 - 8 = 1 ; √ D = 1
Y1 = ( 3 + 1 ) : 2 = 2
Y2 = ( 3 - 1 ) : 2 = 1
X1 = 6 - 4 = 2
X2 = 6 - 2 = 4
ОТВЕТ ( 2 ; 2 ) ; ( 4 ; 1 )
X^2 + Y^2 = 10
XY = - 3
X = ( - 3 / Y ) ; X^2 = 9 / Y^2
( 9 / Y^2 ) + Y^2 = 10
( 9 + Y^4 ) / Y^2 = 10 ( Y ≠ 0 )
9 + Y^4 = 10Y^2
Y^4 - 10Y^2 + 9 = 0
Y^2 = A ; A > 0
A^2 - 10A + 9 = 0
D = 100 - 36 = 64 ; √ D = 8
A1 = ( 10 + 8 ) : 2 = 9
A2 = ( 10 - 8 ) : 2 = 1
Y^2 = 9 ===> Y (1 /2 ) = ( + / - ) 3
Y^2 = 1 ===> Y ( 3/4 ) = ( +/ - ) 1
X^2 = 9 / Y^2
X^2 = 9 / 9 = 1 ===> X ( 1/2 ) = ( + / - ) 1
X^2 = 9 / 1 = 9 ===> X ( 3/4 ) = ( + / - ) 3
ОТВЕТ ( 1 ; 3 ); ( - 1 ; - 3 ); ( 3 ; 1 ) ; ( - 3 ; - 1 )