См. рисунок
1. Правильный шестиугольник, состоит из шести равносторонних треугольников.
Найдем сторону шестиугольника AB=r=48/6=8м.
Рассмотрим ΔСDO в нем CD=DO=0,5a (где а - сторона квадрата) ⇒ a=2CD
По теореме Пифагора найдем СD
r²=CD²+DO²=2CD² ⇒ r=CD√2⇒ м
м
2. Из задачи №1. мы убедились, что радиус описанной окружности равен стороне правильного шестиугольника.
Площадь правильного шестиугольника равна
⇒
см
Длина окружности равна L=2πr=2π4√3=π*8√3≈43,5 см
3. Площадь сектора равна
≈151 см²
(где n - градусная мера дуги сектора)
х1+х2=5 у1+у2=-8 D=9+4*4*7=121=11²
х1*х2=6 у1*у2=16 х1=(3+11)/14=1 х1=1
х1=3 у1=4 х2=(3-11)/14=8/14=4/7 х2=4/7
х2=2 у2=4
8х²+5х-3=0
D=25+4*3*8=121=11²
х1=(-5+11)/16=6/16=3/8 х1=3/8
х2=(-5-11)/16=-1 х2=-1