Пусть скорость первого х км/ч., тогда скорость второго (х+7)км/ч, превратим эту скорость в м/мин. Известно, в 1км 1000м, в часе 60мин., поэтому
1км/ч=1000м/60мин=50/3(м/мин.)
По условию стартовали одновременно, разница в расстоянии составляла 500м, когда первый пробежал 15минут со своей скоростью, а второй 10 мин. (15-5=10/мин./)со своей . Путь первого составил х*(50/3)*15=750х/3; а второго (х+7)*(50/3)*10=(х+7)*500/3. По условию задачи составим и решим уравнение.
(х+7)*500/3-750х/3=500; (х+7)*500-750х=500*3; 500*(х+7-3)-750х=0;
500*(х+4)-750х=0; 500х+2000-750х=0; 750х-500х=2000; 250х=2000; х=8
Значит, скорость первого бегуна 8км/ч или 8*50/3=400/3=133 и 1/3 м/мин.
Пусть х - производительность первого рабочего, а у - производительность второго рабочего. Тогда за 4 дня они могут выполнить совместно 4(х+у)=2/3. Количество дней за которое может выполнить работу первый рабочий 1/х, а второй 1/у. Составим и решим систему уравнений:
4(х+у)=2/3
1/х-1/у=5
х+у=1/6
(у-х)=5ху
у=1/6-х
1/6-х-х=5(1/6-х)*х
1/6-2х=5/6х-5х²
5х²-17/6х+1/6=0 |*6
30х²-17х+1=0
D=17²-4*30=169=13²
x₁=(17+13)/60=1/2 y₁=1/6-1/2<0 не подходит
x₂=(17-13)/60=1/15 у₁=1/6-1/15=3/30=1/10
Значит производительность первого работника 1/15, а второго 1/10.
1:1/15=15 дней выполнит работу первый рабочий
1:1/10=10 дней выполнит работу второй рабочий
ответ за 10 дней и за 15 дней
ответ: 9.
Объяснение:
Знайдіть номер члена арифметичної прогресії (ан) який дорівнює 10.9 якщо a1=8,5; d=0,3.
Решение.
an=a1+(n-1)d.
10,9 =8.5+(n-1)0,3;
n-1 = (10,9-8,5)/0,3;
n=1+8;
n=9.