1. Длина площадки равна 15 м, ширина равна 7 м.
2. 3 упаковки.
Объяснение:
Площадь площадки равна 105 м².
1 сторона на 8 метров больше другой.
Бордюр в упаковках по 15 метров.
1. Вычислить значения сторон площадки,
2. Вычислить необходимое число упаковок для бордюра.
Решение.
1. Пусть одна сторона х м. Тогда вторая равна х+8 м.
S площадки равно х(х+8)=105 м².
х²+8х-105=0;
По теореме Виета
х1+х2=-8; х1*х2=-105;
х1= 7; х2= -15 --- не соответствует условию.
Одна сторона площадки равна 7 метров.
Вторая сторона равна 7+8=15 метров.
2. Периметр площадки равен
Р=2(а+b)=2(7+15)=44 метра
в одной упаковке 15 метров материала для бордюр.
Значит надо купить 44/15=2 14/15 упаковок
или, округленно, 3 упаковки
ответ: при х=1 и при х=-1
Объяснение:Точки пересечения графиков данных функций y=x²+4x+1 и y=kx можно найти, приравняв значения функций:
x²+4x+1 = kx
x²+4x+1 - kx =0
x²+(4-k)·x+1 = 0
По условию прямая y=kx и парабола y=x²+4x+1 имеют только одну общую точку, значит дискриминат полученного квадратного уравнения равен 0 (чтобы квадратное уравнение имело единственный корень), ⇒D=(4-k)² - 4·1·1= 16-8k+k²-4= k²-8k+12
k²-8k+12=0
k₁=2, k₂=6
Поэтому прямая у=2х и парабола y=x²+4x+1 имеют только одну общую точку⇒x²+4x+1 =2х⇒x²+2x+1 =0⇒ (х+1)²=0 ⇒ х=-1
прямая у=6х и парабола y=x²+4x+1 имеют только одну общую точку⇒x²+4x+1 =6х⇒ x²-2x+1 =0⇒ (х-1)² =0 ⇒ х=-1