Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).
Алгоритм такой: 0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально. 1. Вычисляется площадь фигуры под ; 2. Теперь — под ; 3. Разность площадей и будет искомой фигурой.
По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.
Поехали.
1)
2)
3) (кв. ед.)
Вроде бы так... :) Попробую сейчас проверить решение.
Пример:Какое число из промежутка (2;3) не входит в область определения функции y=tg(пиХ)? 1.область определения = ОДЗ(область допустимых значений) = D(y) - значения аргумента Х, при которых функция существует, то есть такие Х, при которых можно сосчитать У, 2.tg(ПХ)=sin(ПХ)/cos(ПХ), тангенс пиХ нельзя сосчитать когда косинус пиХ равен нулю, так как на нолю делить нельзя. cos(пиХ)=0 , пиХ=пи/2 +пиN, N принадлежит Z( множество целых чисел), 3.теперь выделим Х: разделим всё уравнение на пи Х=0.5+N, N принадлежит Z 4.теперь осталось подставлять числа и находить Х из промежутка (2;3): N=2, x=2,5, 2,5 входит в данный промежуток N=1, Х=1,5 , 1,5 не входит N=3, Х=3,5, 3,5 не входит 5. таким образом Х=2,5 не входит в область определения данной функции 6. проверка(если сомневаешься): tg(2,5пи)=sin(2,5пи)/cos(2,5пи)=sin(2пи+0,5пи)/cos(2пи+0,5пи) , 2пи-полный оборот, его можно убрать sin(0,5пи)/cos(0,5пи)=sin(90)/cos(90)=1/0, на ноль делить нельзя, => 2,5 не входит в область определения => мы решили правильно
1) (18a-3a²)/(8a²-48a)=3a(6-a)/8a(a-6)=3a(-1)(a-6)/8a(a-6)=-3/8
2) (8p-40)/(15-3p)=8(p-5)/3(5-p)=8(-1)(5-p)/3(5-p)=-8/3
3) (4-x²)/(10-5x)=(2-x)(2+x)/5(2-x)=(2+x)/5=2/5+x/5=0.4+0.2x
Ну как то так