все таки математика настигла огромной волной и накрыла корнями и дробными степенями ???
(x)^1/n = ⁿ√x (например x^1/3 = ∛x x^1/2 = √x)
x² - y² = (x - y)(x + y)
(x + y)² = x² + 2xy + y²
(x^n)^m = x^(nn)
x^n * x^m = x^(n+m)
ⁿ√xⁿ = x (для положительных х)
x^-1 = 1/x
1. 64^1/6 = ⁶√(2⁶) = 2
2. 27 ^2/3 = ∛ 27² = ∛ (3³)² = 3² = 9
3. 0^51/4 = 0 (0 в любой положительной степени = 0)
5. x^1/2 = (x^1/4)²
(a^1/2 - b^1/2) / (a^1/4 + b^1/4) = (a^1/4 - b^1/4)(a^1/4 + b^1/4)/(a^1/4 + b^1/4) = a^1/4 - b^1/4
4. (x^1/3 + y^1/3)² - 2∛(xy) - 1/(∛y)^-2 = x^2/3 + 2x^1/3*y^1/3 + y^2/3 - 2x^1/3*y^1/3 - y^2/3 = x^2/3
^ - степень ( x^2/3 = ∛x² икс в степени две третьих)
Так как квадраты чисел неотрицательны, то х²≥0 при любых значениях х.Наименьшее значение , которое принимает х² равно нулю, а наибольшего не существует, так как значение х² может только увеличиваться. То есть 0≤х²<+∞. А теперь от этого неравенства, от всех его частей отнимем 5, получим 0-5≤х²-5<∞-5. Получим -5≤х²-5<∞. От бесконечности какое не отнимай постоянное число ( или прибавляй к ней) она всё равно останется БЕСКОНЕЧНОСТЬЮ.
Можно было нарисовать график у=х²-5. Это парабола с вершиной в точке (0,-5), ветви вверх. Мысленно ( или не мысленно, а явно) спроектируй все точки, лежащие на параболе на ось ОУ.Увидишь, что все у-ки попадут в промежуток [0,∞), то есть у∈ [0,∞).