М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
лика487
лика487
29.07.2022 16:41 •  Алгебра

ЗА ПОЛНОСТЬЮ РЕШЁННЫЕ ПРИМЕРЫ ! АЛГЕБРА.


ЗА ПОЛНОСТЬЮ РЕШЁННЫЕ ПРИМЕРЫ ! АЛГЕБРА.

👇
Ответ:
Федот2003
Федот2003
29.07.2022

Объяснение:

вот на б и в не знаю ......


ЗА ПОЛНОСТЬЮ РЕШЁННЫЕ ПРИМЕРЫ ! АЛГЕБРА.
ЗА ПОЛНОСТЬЮ РЕШЁННЫЕ ПРИМЕРЫ ! АЛГЕБРА.
4,8(31 оценок)
Открыть все ответы
Ответ:
Roma200511111gnh
Roma200511111gnh
29.07.2022
Решение:

Из второго уравнения системы выражаем y:

y = |x+2| - 2

И подставляем в первое уравнение:

|x+2|-2=2\sqrt{x+3}

При этом нужно учитывать, что:

\displaystyle \left \{ {{x+3 \geq 0} \atop { |x+2|-2 \geq 0}} \right.

Из первого неравенства получаем, что x\geq -3.

Во втором неравенстве нужно рассмотреть два случая: при x+2 \geq 0 имеем, что x \in [0;\infty), при x+2 \leq 0 получаем, что x \in (-\infty;-4]. В итоге x \in ( - \infty; -4 ] \cup [0; + \infty).

В итоге получаем пересечение x \in [0; \infty).

Учитывая это, возводим обе части полученного ранее уравнения в квадрат и раскрываем модули:

|x+2|-2 = 2\sqrt{x+3} \;\;\;\; (x \geq 0)\\\\x+2-2=2\sqrt{x+3} \\\\x = 2 \sqrt{x+3} \\\\x^2 = (2\sqrt{x+3} )^2 \\\\x^2 = 4x + 12\\\\x^2 - 4x - 12 = 0

При теоремы Виета получаем, что:

\left[\begin{array}{ccc}x_1=-2\\x_2=6\end{array}\right

Первый корень не удовлетворяет нас по введенным ограничениям, так что x=6.

Найдем y:

y = |x+2|-2 = |6+2|-2=6

Получаем, что x=6 и y=6. Эта пара удовлетворяет и первому уравнению, как можно убедиться.

Так что:

2x_0-y_0 = 2 \cdot 6 - 6 = 12-6=6

Задача решена!

ответ: 6.
4,7(41 оценок)
Ответ:
Ryslan090
Ryslan090
29.07.2022

f(x)=\left\{\begin{array}{l}2^{x}\ ,\ \ x\leq 0\ ,\\-x^2\ ,\ \ 0

Исследуем поведение функции вблизи точек, где её аналитическое выражение меняется . Найдём левосторонние и правосторонние пределы в точках х=0, х=2 , х=5 .

a)\ \ \lim\limits _{x \to 0-0}f(x)=\lim\limits _{x \to 0-0}2^{x}=1\ \ ,\ \ \ \lim\limits _{x \to 0+0}f(x)=\lim\limits _{x \to 0+0}(-x^2)=0\\\\\lim\limits _{x \to 0-0}f(x)\ne \lim\limits _{x \to 0+0}f(x)\ \ \Rightarrow

При х=0 функция имеет разрыв 1 рода .

b)\ \ \lim\limits _{x \to 2-0}f(x)=\lim\limits _{x \to 2-0}(-x^2)=-4\ ,\ \ \lim\limits _{x \to 2+0}f(x)=\lim\limits _{x \to 2+0}(x-6)=-4\\\\f(2)=(-x^2)\Big|_{x=2}-4\\\\\lim\limits _{x \to 2-0}f(x)=\lim\limits _{x \to 2+0}f(x)=f(2)=-4\ \ \ \Rightarrow

При х=2 функция непрерывна.

c)\ \ \lim\limits _{x \to 5-0}f(x)=\lim\limits _{x \to 5-0}(x-6)=-1\\\\\lim\limits _{x \to 5+0}f(x)=\lim\limits _{x \to 5+0}3^{\frac{4x}{x-5}}=3^{+\infty }=+\infty \ \ \ \Rightarrow

При х=5 функция имеет разрыв 2 рода .

График функции нарисован сплошной линией.

На 1 рисунке нет чертежа функции  y=3^{\frac{4x}{x-5}}   при х>5  , для которого прямая х=5 является асимптотой , так как он не умещается при данном масштабе. Этот график полностью начерчен отдельно на 2 рисунке, чтобы вы понимали, как он расположен. Но для вашей функции берётся только та часть графика, которая нарисована для х>5 .


Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.
Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.
4,4(84 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ