Моторная лодка против течения реки 77км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше, чем на путь против течения. найдите скорость лодки в неподвижной воде, если скорость течения реки равна 4км/ч.ответ дайте в км/ч
Пусть собственная скорость моторной лодки х км/ч, тогда скорость моторной лодки по течению реки равна (х + 4) км/ч, а против течения реки - (х - 4) км/ч. Моторная лодка 77 километров по течению реки за 77/(х + 4) часа, а это же расстояние против течения реки за 77/(х - 4) часа. По условию задачи известно, что время в пути по течению реки меньше времени в пути против течения реки на (77/(х - 4) - 77/(х + 4)) часа или на 2 часа. Составим уравнение и решим его.
Уравнение прямой на плоскости имеет в общем случае (когда прямая не параллельна ни одной из координатных осей) вид ax+by+c=0, где x и y - координаты любой точки, принадлежащей прямой. 1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox. 2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1
Формула площади трапеции S=mh=(AB+CD/2)h Зная радиус вписанной окружности, мы устанавливаем, что h=2r=6 Далее по т. о касательных, а так же зная, что трапеция равнобокая, мы имеем AC=12, AB=CD=x+6 BC=2x Находим по формуле длину отрезка между высотой из угла при меньшем основании и углом при большем основании: АС-ВС/2 = 6-х Так как высота - перпендикуляр, можно утверждать, что по т. Пифагора: (x-6)^2+h^2=(x+6)^2 т. е. 36+12х+х^2-36+12x-x^2=h^2 => 24x=36 => x=1.5 Далее вычисляем основания и считаем площадь: (12+3/2)*6=45 ответ: S=45 ед^2
Пусть собственная скорость моторной лодки х км/ч, тогда скорость моторной лодки по течению реки равна (х + 4) км/ч, а против течения реки - (х - 4) км/ч. Моторная лодка 77 километров по течению реки за 77/(х + 4) часа, а это же расстояние против течения реки за 77/(х - 4) часа. По условию задачи известно, что время в пути по течению реки меньше времени в пути против течения реки на (77/(х - 4) - 77/(х + 4)) часа или на 2 часа. Составим уравнение и решим его.
77/(x - 4) - 77/(x + 4) = 2;
О.Д.З. x ≠ ±4;
77(x + 4) - 77(x - 4) = 2(x^2 - 16);
77x + 308 - 77x + 308 = 2x^2 - 32;
2x^2 = 308 + 308 + 32;
2x^2 = 648;
x^2 = 648 : 2;
x^2 = 324;
x1 = 18 (км/ч);
х2 = -18 - скорость не может быть отрицательной.
ответ. 18 км/ч.
Объяснение:
Оцени