М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Do6pblu322
Do6pblu322
21.03.2022 18:39 •  Алгебра

к.р 8 класс 1 Задание
За теоремой Виета найти корни квадратного уравнения x^2-8x+15=0
2 Задание
Не решая уравнение найти сумму и произведение корней x^2+x-6=0
3 Задание
Найти корни уравнения x^2-8*x=0
4 Задание
Найти корни уравнения x^2-49=0
5 Задание
решить уравнение 7x=x^2+12
6 Задание
решить уравнение x^2+5x= -6
7 Задание
При каких значениях x, значение многочлена x^2-2x-3 равняется 0
8 Задание
решить уравнение 2x^2+7x-4=0
9 Задание
решить уравнение x*|x|+3x-4=0

👇
Открыть все ответы
Ответ:
0689433382
0689433382
21.03.2022
Классическое решение делается в двух основных частях:

1) Поиск ОДЗ – область допустимых значений.
2) Решение уравнения.

Немного о первом.
Все семь основных арифметических действий + , - , \cdot , : , x^n , \sqrt[n]{x} и \log_a{x} – имеют ОДНОЗНАЧНЫЙ результат. Вы, возможно знаете пока не все из них, но это не меняет ничего в рассуждениях. Однозначность действия означает, что при вычислении результата любого из них получается однозначный ответ. Ну, например, ведь нет такого, что у одного при вычислении 3 + 5 = 8 , а у другого 3 + 5 = 7 :–) ?! Конечно же, нет, это бы вызывало полную неразбериху и ни в одной науке ничего нельзя было бы вычислить ни по одной формуле. Но иногда, при изучении квадратного корня, учащиеся понимают это действие не совсем корректно, полагая, что \sqrt{4} = 2 , но одновременно с тем как бы и \sqrt{4} = - 2 . Это ошибка! Так понимать действие корня нельзя. Любой калькулятор покажет именно \sqrt{4} = 2 , и это и есть верный результат вычислений, поскольку он единственный, так как любое арифметическое действие должно давать ОДНОЗНАЧНЫЙ результат.

Происхождение такого недоразумения вполне объяснимо. Это происходит из созвучности понятий «квадратный арифметический корень» и «корни нелинейного уравнения». Выше мы говорили именно о «квадратном арифметическом корне», и об однозначности этого арифметического действия, а что такое «корни нелинейного уравнения» можно проиллюстрировать на таком примере, как x^2 = 4 . Корни этого нелинейного уравнения, как легко понять: x_1 = -2 и x_2 = 2 или в короткой записи x = \pm 2 , что равносильно x = \pm \sqrt{4} , где сам «арифметический квадратный корень» \sqrt{4} – это именно ПОЛОЖИТЕЛЬНОЕ число, а уж перед ним ставятся разные знаки, чтобы показать, что «корнями этого нелинейного уравнения» являются и само значение «квадратного арифметического корня» и число, противоположное ему. Аналогично, например, для уравнения: x^2 = 7 . Корни этого нелинейного уравнения, как легко понять: x = \pm \sqrt{7} , где сам «арифметический квадратный корень» \sqrt{7}– это именно ПОЛОЖИТЕЛЬНОЕ число, а уж перед ним ставятся разные знаки, чтобы показать, что «корнями этого нелинейного уравнения» являются и само значение «квадратного арифметического корня» и число, противоположное ему.

Значит при поиске ОДЗ (область допустимых значений) нужно всегда учитывать, что подкоренное выражение (всё то, что стоит под знаком корня) во-первых: должно быть неотрицательным, потому что иначе нельзя извлечь корень, а во-вторых: результат вычисления самого арифметического квадратного корня должен быть равен тоже неотрицательному числу, по причинам, которые были подробно описаны в предыдущем абзаце. Есть ещё несколько простых принципов, по которым выстраивается логика ОДЗ, но в данной задаче они не нужны, так что не будем все их перечислять. А теперь решим задачу классическим

Р Е Ш Е Н И Е :

\sqrt{ x + 4 } - x + 2 = 0 ;

\sqrt{ x + 4 } = x - 2 ;

1. ОДЗ:

\left\{\begin{array}{l} x + 4 \geq 0 ; \\ x - 2 \geq 0 . \end{array}\right

\left\{\begin{array}{l} x \geq -4 ; \\ x \geq 2 . \end{array}\right

x \in [ 2 ; +\infty ] ;

2. Решение уравнения:

( \sqrt{ x + 4 } )^2 = ( x - 2 )^2 ;

x + 4 = x^2 - 2 \cdot x \cdot 2 + 2^2 ;

x + 4 = x^2 - 4x + 4 ;

x^2 - 5x = 0 ;

x ( x - 5 ) = 0 ;

x_1 = 0 ,       это не соответствует ОДЗ, поскольку x_1 = 0 \notin [ 2 ; +\infty ] ;

x_2 = 5 ,       что соответствует ОДЗ, поскольку x_2 = 5 \in [ 2 ; +\infty ] ;

О Т В Е Т : x = 5 .
4,6(18 оценок)
Ответ:
zroslama
zroslama
21.03.2022
Пусть ширина листа (сторона квадрата) равна b=х см. После того, как от прямоугольного листа картона отрезали квадрат, длина оставшегося прямоугольника стала равна  a=16-х см.
Площадь прямоугольника равна: S=a*b=60 см²
Составим и решим уравнение:
х(16-х)=60
16х-х²=60
х²-16х+60=0
D=b²-4ac=(-16)²-4*1*60=256-240=16 (√16=4)
х₁=  \frac{-b+ \sqrt{D} }{2a} =  \frac{-(-16)+4)}{2*1} = \frac{20}{2} = 10
х₂=  \frac{-b- \sqrt{D} }{2a} =  \frac{-(-16)-4)}{2*1} = \frac{12}{2} = 6
ОТВЕТ: ширина  листа равна 10 см; ширина листа равна 6 см.

По теореме Виета:
х²-16х+60=0
х₁+х₂=16
х₁*х₂=60
х₁=10
х₂=6

Проверим:
Ширина листа равна 10 см, длина 16 см.
Вырезанный квадрат со стороной а=10 см.
Ширина оставшегося прямоугольника равна 10 см, длина 16-10=6 см. Площадь равна: S=10*6=60 см².

Ширина листа равна 6 см, длина 16 см.
Вырезанный квадрат со стороной а=6 см.
Ширина оставшегося прямоугольника равна 6 см, длина 16-6=10 см. Площадь равна: S=6*10=60 см².
4,4(89 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ