Формула решения квадратного уравнения!
ax^2+bx+c=0
x1=(-b+кор.кв.( b^2-4ac))/2a
x2=(-b-кор.кв.( b^2-4ac))/2a
где:
^2- значит в квадрате!
кор.кв.( b^2-4ac) - корень квадратный из выражения (b в квадрате -4*a*c)
1)5x^2-7x+2=0
x1=(7+кор.кв(49-40))/10=(7+3)/10= 1
х2=(7-кор.кв(49-40))/10=(7-3)/10= 0,4
2)3x^2+5x-2=0
x1=(-5+кор.кв.(25-24))/6=(-5+1)/6=-4/6= -2/3
x2=(-5-кор.кв.(25-24))/6=(-5-1)/6=-6/6= -1
3)2x^2-7x+3=0
x1=(7+кор.кв.(49-24))/4=(7+5)/4=12/4= 3
x2=(7-кор.кв.(49-24))/4=(7-5)/4=2/4= 1/2
4)3x^2+2x-5=0
x1=(-2+кор.кв(4+60))/6=(-2+8)/6= 1
x2=(-2-кор.кв(4+60))/6=(-2-8)/6=-10/6= -1(2/3)
5)5x^2-3x-2=0
x1=(3+кор.кв.(9+40))/10=(3+7)/10=10/10= 1
x2=(3-кор.кв.(9+40))/10=(3-7)/10=-4/10= -0,4
(х-3+1)/(х+1) = (х-2)/(х+1) - новая дробь
Так как по условию их разность равна 3/20, то составляем уравнение:
(х-2)/(х+1) - (х-3)/ х = 3/20
приводим к общему знаменателю: 20х(х+1) и отбрасываем его, заметив, что х≠0, х≠-1
20х(х-2)-20(х+1)(х-3) = 3х(х+1)
20х²-40х-20х²+40х+60=3х²+3х
3х²+3х-60=0 | :3
х²+х-20=0
Д=1+80=81=9²
x(1)=(-1+9)/2=4 => исходная дробь (4-3) / 4 = 1/4
x(2)=(-1-9)/2=-5 => исходная дробь (-5-3) / (-5) = -8/(-5) = 8/5>1 не подходит под условие задачи
ответ: 1/4