ответ: решение невозможно, возможно, в задаче есть ошибка, но я написала решение и вы всегда можете заменить данные правильными
Объяснение: Так как получившиеся прямоугольники равны, они резали изначальные прямоугольники одна вдоль, а другая поперёк. Надеюсь, вы уже изучали х и у.
пусть длина изначального прямоугольника 2х, а ширина 2у
тогда если резать вдоль: периметр = 2*2у+ 2*2х\2 = 4у+2х
Если резать поперёк: периметр = 2*2х+ 2*2у\2 = 4х+ 2у
Напоминаю: длина всегда больше ширины, поэтому:
4у+2х=18
2у+ 4х = 39
собираем эти два уравнения в систему, домножаем первое на -1, а второе на 2:
-4у-2х=-18
4у+8х=78
складываем:
6х=60
х=10
НО!
4у+20=18
у=-0,5, а это невозможно
переходи по ссылке там ответ
Ну или не переходи
Решите систему неравенств:
x²-3x+9>0
x²≤36
Решить первое неравенство:
x² - 3x + 9 > 0
Приравнять к нулю и решить квадратное уравнение:
x² - 3x + 9 = 0
D=b²-4ac =9 - 36 = -27
D < 0
Уравнение не имеет действительных корней.
Значит, неравенство выполняется всегда или не выполняется никогда.
Подставить в неравенство произвольное значение х:
х = 0;
0 - 0 + 6 > 0, выполняется.
Значит, неравенство верно при любом значении х.
Решение первого неравенства: х∈(-∞; +∞).
Решить второе неравенство:
x² ≤ 36
Приравнять к нулю и решить квадратное уравнение:
x² = 36 неполное квадратное уравнение
х = ±√36
х₁ = -6;
х₂ = 6.
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, пересекают ось Ох в точках х= -6 и х= 6.
Решение второго неравенства: х∈[-6; 6].
Неравенство нестрогое, скобки квадратные.
Отметить на числовой оси интервалы решений двух неравенств и найти пересечение решений, это будет решение системы неравенств.
Пересечение решений: х∈[-6; 6].