Неполным квадратным называется такое уравнение,в котором хотя бы один из коэффициентов, кроме старшего( либо второй, либо свободный член) равен нулю. В нашем уравнении: b= -(a-6); c=(a^2-9). Старший коэффициент "a" = (a+3). Он не должен равняться нулю ( при а=-3), т.к. уравнение уже не будет квадратным. Поэтому,а=-3 нас не устраивает. 1). b=0 a-6=0 a=6 2)c=0 a^2-9=0 a^2=9 a1=-3 ( нам не подходит этот вариант) a2=3 При а =3 уравнение выглядит так: 6x^2+3x=0 При а=6 уравнение выглядит так:9x^2+27=0 ответ: a=3; a=6
Треугольник был бы равнобедренным, если бы был прямоугольным. А он таковым не является. Решение:пусть угол А = 45 градусов, АВ = 10, АС = 12. Опустим высоту из вершины В, тогда треугольник АВН - прямоугольный и равнобедренный, значит угол АВН равен 90-45=45 градусов, и два квадрата катета (в данном случае это еще и высота треугольника АВС) в сумме дают 10^2=100, то есть 2ВН^2=100 => BH^2=50 => BH = корень из 50, а далее по формуле - полупроизведение высоты (корень 50) и основания (12), то есть(корень 50 *12)/2= 6 корней из 50 [ШЕСТЬ корней из ПЯТИДЕСЯТИ]