4. Група з 18 учнів має такі оцінки з історії за семестр :8; 9:11; 10; 12:9:9:9; 10; 10; 8; 9; 10; 11; 8; 12; 7, 11 Визначте середнє значення , моду та медіану вибірки
объединяем 1) и 2) пересекаем x∈[3/2;3]∪(4;+∞) с одз ⇒ x∈∅ ответ: нет решений (скорее всего вы неправильно условия задания переписали, но у написанной задачи ответ будет ⇒ нет решений) p.s. у правильно переписанного задания модель решения будет такой же, но ответ естественно м.б. другим
2t^2+3t-2=0
D=9+16=25
t1=(-3-5)/4=-2 посторонний, т.к. |t|<=0
t2=(-3+5)/4=1/2
вернёмся к замене
sinx=1/2
x=(-1)^n Π/6+Πn, n€Z
или можно записать так:
x1=Π/6+2Πn, n€Z
x2=5Π/6+2Πn, n€Z
2) 8cos^4x-6(1-sin^2x)+1==0
8cos^4x+6cos^2x-5=0
Пусть t=cos^2x, где t€[-1;1]
8t^2+6t-5=0
t1=-5/4 посторонний
t2=1/2
Вернёмся к замене
cos^2x=1/2
cosx=+-√2/2
Распишем отдельно
cosx=√2/2
x=+-arccos√2/2+2Πn, n€Z
x=+-Π/4+2Πn, n€Z
cosx=-√2/2
x=+-arccos(-√2/2)+2Πn, n€Z
x=+-(Π-Π/4)+2Πn, n€Z
x=+-3Π/4+2Πn, n€Z
ответ: +-3Π/4+2Πn, +-Π/4+2Πn, n€Z