Привет, мои замечательные!
Сегодня таки выбрались к Вовиной маме где есть нормальный интернет и могу написать тот огромный пост о котором говорила ранее, но начнем по-порядку.
Вернулись в Минск в понедельник рано утром. Встретил Минск нас ледяным ветром, снегом иотсутствием жилья, но несмотря на все это, мы в буквальном смысле слова готовы были целовать землю минскую, потому-что за всю эту поездку мы поняли совершенно точно и определенно — лучше Беларуси может быть только Беларусь и это я говорю, как человек, который пожить успел в Европе, причем не на правах эмигранта, и по России покататься и по миру в целом...
Итак,понедельник. Минск. Утро. Вещи оставили в камере хранения и побрели в ближайшее кафе с услугой wi-fi дабы начать поиски жилья. Да-да, за 1,5 месяца странствий нашу квартиру решили больше не сдавать, но нас предупредить как-то забылину ладно, это уже в День сумасшедших поисков дал результат и к вечеру мы нашли чудесную квартиру, предварительно охерев от того, как вырос ценних на жилье. На следующий день собрали все вещи в старой квартире и переехали за 5 часов...я все еще как в тумане и ума не приложу, КАК мы смогли все собрать и за такой короткий срок перевести, но мы это сделали. ... а сейчас постараюсь собрать все свои мысли и с чувством, с толком, с расстановкой рассказать о наших скитаниях, путешествиях и впечатлениях за этот месяц...
Объяснение:
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.
Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.