Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
y(y+6)²-(y+1)(y-6)²=y(y²+12y+36)-(y+1)(y²+12y+36)=
=y³+12y²+36y-(y³+12y²+36y+y²+12y+36)=y³+12y²+36y-y³-12y²-36y-y²-12y-36=
=-y²-12y-36=-(y²+12y+36)=-(y+6)²
100-140a+49a²=(10-7a)²
x⁴+18x²y+81y²=(x²+9y)²
(x²-4x)²-16 =(x²-4x)²-4²=((x²-4x)+4)((x²-4x)-4)=(x²-4x+4)(x²-4x-4)
9b²-25c²-3b+5c=(9b²-25c²)+(-3b+5c)=(3b+5c)(3b-5c)-(3b-5c)=
=(3b-5c)(3b+5c-1)
(a-3b)²=a²-9b²
a²-3ab+9b²=a²-9b²
a²-6ab+9b²-a²+9b²=0
-6ab+18b²=0
-6b(a-3b)=0
a-3b=0
a=3b
значит при любых значениях удовлетворяющих а=3b, исходное равенство будет верным