Для начала, можно посмотреть несколько последовательных степеней двойки: 1 2 2 4 3 8 4 16 5 32 6 64 7 128 8 256 9 512 Как видим, последняя цифра меняется так: 2, 4, 8, 6. А далее эта последовательность повторяется. То есть имеем повторяющуюся последовательность из четырёх цифр. Чтобы понять, на какую из этих цифр заканчивается 2^2015, мы разделим 2015 на 4. Получим 503 и остаток 3.
Чтобы далее было понятно, рассмотрим варианты: 1) если бы разделилось нацело (как, например, четвёртая степень), то число бы оканчивалось на шесть (смотри выше посчитанные степени) 2) если был бы остаток 1 (как, например, для пятой степени), то число бы оканчивалось на 2 3) если был бы остаток 2 (как, например, для шестой степени), то число бы оканчивалось на 4 4) а если остаток 3 (как, например, для седьмой степени), то число будет оканчиваться на 8
Соответственно, последняя цифра числа 2^2015 будет восемь.
Объяснение:
3*(x+1)²=2x+2;
3(x²+2x+1)=2x+2;
3x²+6x+3=2x+2;
3x²+4x+1=0;
a=3; b=4; c=1;
D=b²-4ac = 4²-4*3*1=16-12 = 4=2²>0 - 2 корня.
x1,2=(-b±√D)/2a = (-4±√4)/2*3 = (-4±2)/6;
x1=(-4+2)/6 = -2/6= -1/3;
x2=(-4-2)/6=-6/6= -1.
***
0.1х² - 3x-5=0; [*10]
x²-30x-50=0;
a=1; b=-30; c=-50;
D=b²-4ac = (-30)²-4*1*(-50) = 900+200=1100>0-2корня.
x1,2 = (-b±√D)/2a=(-(-30)±√1100)/2*1=(30±√1100)/2 = 2(15±5√11)/2=
=15±5√11.
a=0.1; b=-3; c=-5;
D=b²-4ac = (-3)²-4*0.1*(-5) = 9+2=11>0 - 2 корня.
x1,2=(-b±√D)/2a=(-(-3)±√11)/2*0.1=(3±√11)/0.2.
x1=(3+√11)/0.2 =