М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
KaterinaKlimenko2017
KaterinaKlimenko2017
13.05.2022 14:11 •  Алгебра

Списать конспект за 10 класс параграф 23, стр 126​

👇
Открыть все ответы
Ответ:
YTTeamGardnYT
YTTeamGardnYT
13.05.2022
А)y`=dy/dx
(1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными
ydy=eˣdx/(1+eˣ)
∫ydy=∫eˣdx/(1+eˣ)
y²/2=ln|eˣ+1| + c - общее решение
Можно вместо с взять lnC  и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить.
y²/2=lnС(eˣ+1)  - общее решение
при у=1 х=0
1/2=ln2C
2C=√e
C=(√e)/2

y²/2=ln((eˣ+1)· (√e)/2) - частное решение
можно умножить на 2
y²=2ln((eˣ+1)· (√e)/2) 
или
y²=ln((eˣ+1)²·e/4) - частное решение 

b) y`=dy/dx
tgxdy=y㏑ydx - уравнение с разделяющимися переменными
dy/ylny=dx/tgx;
∫dy/ylny=∫dx/tgx;
∫d(lny)/lny=∫d(sinx)/sinx;
ln|lny)=ln|sinx|+lnC;
ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
 
При y=e x=π/4
ln|lne|=ln|Csin(π/4)|
ln|1|=ln|C√2/2|  
1=C√2/2
C=√2
ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
 
4,6(62 оценок)
Ответ:
sooova123
sooova123
13.05.2022
tg^3 x+ctg^3 x+tg^2 x+ctg^2 x =0
tg^3 x+ \frac{1}{tg^3x} +tg^2 x+ \frac{1}{tg^2x} =0
Замена: tg^2x=t \neq 0
t^3+ \frac{1}{t^3} +t^2+ \frac{1}{t^2} =0,t \neq 0
\frac{t^6+t^5+t+1}{t^3} =0,t \neq 0
t^6+t^5+t+1=0,t \neq 0

Если целые корни есть, то это либо 1 либо -1 (теорема Безу и все что с ней связано)
\frac{t^6+t^5+t+1}{t-1} =t^5+1
\frac{t^5+1}{t+1} =t^4-t^3+t^2-t+1
Смотреть деление в столбик

(t+1)^2(t^4-t^3+t^2-t+1)=0,t \neq 0

Рассмотрим отдельно уравнение t^4-t^3+t^2-t+1=0
Оно возвратное! делим его на t^2, t=0 - не его корень
t^2+ \frac{1}{t^2}-(t+ \frac{1}{t} )+1=0
t^2+2*t* \frac{1}{t}+ \frac{1}{t^2}-2-(t+ \frac{1}{t} )+1=0

(t+ \frac{1}{t})^2-(t+ \frac{1}{t} )-1=0
Откуда t+ \frac{1}{t}= \frac{1\pm \sqrt{5} }{2}
откуда выходит два квадратных уравнение, и каждое из них не имеет действительных корней

tg(x)=-1, и sin(x) != 0, и cos(x) != 0

x = -Pi/4 + Pi*n, где n - множество действительных чисел (запрет для синуса и косинуса быть нулем не влияет на это множество)

ответ: -Pi/4 + Pi*n, где n - множество действительных чисел 
Решить тригонометрическое уравнение tg^3 x+ctg^3 x+tg^2 x+ctg^2 x =0
4,6(92 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ