Мяч брошен вертикально вверх. Известно, что зависимость между высотой подъема мяча и временем задается формулой h(t) = -6t2 + 24t (м). На какую наибольшую высоту поднимается Мяч?
При решении этих неравенств надо понимать, что графиком квадратичной функции является парабола. Ветвями вверх или вниз. Если хорошо понимать, как проходит парабола,легко поставить знаки квадратичной функции и потом ответить на вопрос задания.
Вариант 1. 1. Х: 2, 1, 2, 3, 4, 3, 3, 2, 3, 4 Выборка: 10 (Количество элементов х в Х) Сумма абсолютных частот (М) равна количеству элементов выборки. Сумма относительных частот (W) равна 100% или 1. Полигон частот - это графическое изображение в виде ломаной линии плотности вероятности случайной величины. Таблица частот и полигон М во вложении №1. 2. Y: 7, 4, 6, 5, 6, 7, 5, 6 Ранжированный по возрастанию ряд: Y: 4, 5, 5. 6, 6, 6, 7, 7. Выборка:8 Мода: 6 - значение 6 встречается наибольшее кол-во раз. Медиана: 5.5 ((6+5)/2=5.5) - Медиана случайной величины четного ряда является полусумма 2-х средних значений. Среднеарифметическое: 5.75 ((4+2*5+6*3+7*2)/8=5.75) Размах выборки: 3 (7-4=3)
Вариант 2. 1. Х: 1, 0, 4, 3, 1, 5, 3, 2, 4, 3 Выборка: 10 Таблица частот и полигон W во вложении №2. 2. Y: 3, 5, 6, 4, 4, 5, 2, 4, 3 Ранжированный ряд по возрастанию: Y: 2, 3, 3, 4, 4, 4, 5, 5, 6 Выборка: 9 Мода: 4 Медиана: 4 (В нечетном ряду, медиана - это срединное значение варианты) Среднее: 4 ((2+3*2+4*3+5*2+6)/9=4 Размах: 4 (6-2=4)
При решении этих неравенств надо понимать, что графиком квадратичной функции является парабола. Ветвями вверх или вниз. Если хорошо понимать, как проходит парабола,легко поставить знаки квадратичной функции и потом ответить на вопрос задания.
а) х² - 6х +8 > 0
Корни 2 и 4
-∞ (2) (4) +∞
+ - + знаки квадратичной функции
решение неравенства
ответ: х∈(-∞;2)∪(5;+∞)
б) х² + 6х +8 < 0
корни -2 и -4
-∞ (-4) (-2) +∞
+ - + знаки квадратичной функции
решение неравенства
ответ: х∈(-4; -2)
в) -х² -2х +15 ≤ 0
корни -5 и 3
-∞ [-5] [3] +∞
- + - знаки квадратичной функции
решение неравенства
ответ: х∈ (-∞; -5]∪ [3; + ∞)
г) -5х² -11х -6 ≥ 0
корни -1 и -1,2
-∞ [-1,2] [-1] +∞
- + - знаки квадратичной функции
решение неравенства
ответ: х ∈ [-1,2; -1]
д) 9x² -12x +4 > 0
D = 0 корень один
х = 2/3
-∞ (-2/3) +∞
+ + знаки квадратичной функции
решение неравенства
ответ: х∈ (-∞; 2/3)∪ (2/3; +∞)
е) 4х² -12х +9 ≤ 0
D = 0, корень один х = 3/2
-∞ [3/2] +∞
+ + знаки квадратичной функции
∅