1) S=(a²√3)/4=16√3 a²=64, a=8 - сторона треугольника основания, т.к. две боковые грани ⊥ плоскости основания, значит пересечение боковых граней ⊥ основанию, т.е. это пересечение - высота пирамиды. Другая грань наклонена под ∠45° к пл-сти основания, значит две другие грани равнобедренные прямоугольные Δ, с катетами =8. Их площади =(8*8)/2+(8*8)/2=64. Найдем длину двух боковых ребер: с²=8²+8²=2*8², с=√(2*8²)=8√2. Боковые ребра: 8, 8√2, 8√2 Найдем апофему боковой грани: h²+4²=128, h=√( 128 -16)=√112=√16*7=4√7, Площадь этой грани =(8*4√7)/2=16√7 Площадь боковой поверхности=64+16√7
2)= (ах-ау) + (5х -5у) = а(х-у) +5(х-у) = (а+5)(х-у)
4) = 10а -4
5) 4х-8+10х=20
14х = 20+8
14х=28
х = 28 : 14
х=2
6){ - x+4y= -25 > умножаем обе части этого уравнения на 3, получаем:
-3х +12у = -75.
Складываем оба уравнения системы и получаем:
10у = -75+30
10у = -45
у = -4,5. Подставляем это значение во второе уравнение системы:
3х -2(-4,5) =30
3х +9 = 30
3х= 30-9
3х=21
х= 7
ответ: х=7; у=-4,5
7) 2х-5у= 10
2х = 10 +5у
2х = 5(2+у)
х=((5(2+у)) : 2
х = 2,5(2+у)