Задание № 3:
Два пешехода должны выйти навстречу друг другу из двух пунктов, расстояние между которыми 20 км. Если первый выйдет на полчаса раньше второго, то он встретит второго пешехода через 2,5 ч после своего выхода. Если второй выйдет на 1 ч раньше первого, то он встретит первого пешехода через 2 ч 40 мин после своего выхода. Какова скорость первого пешехода (в км/ч)?
пусть х скорость первого (ее надо найти), у скорость второго
имеем систему
2.5x+2y=20 // так как первый шел 2,5 часа и вышел на полчаса раньше, то второй шел 2 часа
5x/3+8y/3=20 // так как второй шел 2 ч 40 мин и вышел на часраньше, то первый шел 1 ч 40 мин
5x+4y=40
5x+8y=60
4y=20
y=5
2.5x+2*5=20
2.5x=10
x=4
ответ: 4
Здесь Все под один знак равно:
y = x^2 + 4x - 2
Тогда графиком данной функции будет являться парабола!
Приравниваем к 0 правую часть функции:
x^2 + 4x - 2 = 0
Находим 2 точки параболы: m и n
m = -b дробная черта 2a. ; -4 дроб. черта 2 = -2
n = 4 -8 -2 = -6
Получились 2 точки: A (-2;0) и B (-6;0);
Далее находим центральную точку нашей параболы путем нахождения дискриминанта:
D = (b/2)^2 - ac. ("/"-дробная черта)
D = 4 - 1 (-2)
D = 6
Это примернооо 2,4 квадратный корень.
x1/2 = -b/2 +- корень из D и все разделить на a.
x1/2 = -2 +- 2,4 /// 1 = / x1 = 0,4; x2 = -4.4
Дальше надо начертить систему координат, и расставить эти точки:
A (-2;0); B (-6;0); C (-4,4; 0,4);
Получится парабола!