1)Уравнение прямой будем искать в виде y = kx + b, надо найти k и b. Этим мы и займёмся.
Прямая проходит через начало координат, это говрит о том, что речь идёт не о линейной функции, а о её частном случае - прямой пропорциональности, задаваемой формулой y = kx. Теперь совсем элементарно найти k. Подставив координаты другой точки в y = kx, найдём отсюда k:
-3 = 4k
k = -3/4
Таким образом, уравнение данной прямой такое - y = -3/4x
2)Этот случай немного сложнее предыдущего. Общий вид прямой опят y = kx + b. Воспользуемся здесь тем, что прямая проходит через данные точки, тогда её координаты, по логике вещей, должны удовлетворять данному уравнению. Подставим в него координаты обеих точек, и решим полученную систему уравнений с двумя переменными:
-3k + b = 4 -3k + b = 4 -2k = 6 k = -3
-k + b = -2 k - b = 2 b - k = -2 b = -5
Всё, коэффициенты найдены. Искомое уравнение прямой - y = -3x - 5
Скорость лодки в стоячей воде равна 35 км/ч.
Лодка, плывущая по течению, до места встречи пройдёт 46,8 км
Лодка, плывущая против течению, до места встречи пройдёт 37,2 км
Объяснение:
Пусть скорость лодок в стоячей воде х км/ч. Тогда скорость по течению (х+4) км/ч, а против течения (х-4) км/ч Т.к. лодки плыли 1,2 ч. То можно составить и решить уравнение
1,2 (х-4) +1,2 (х+4) = 84
1,2(х-4+х+4)= 84
1,2*2*х= 84
х= 84/2,4
х=35
Скорость лодки в стоячей воде равна 35 км/ч.
Лодка, плывущая по течению, до места встречи пройдёт
1,2 (35+4)= 46,8 км
Лодка, плывущая против течению, до места встречи пройдёт
1,2 (35-4)= 37,2 км