Переберем все варианты по комбинаторике. Если первые 2 цифры - 24, то варианта для 3-ей цифры 3. Это 242, 244 и 249. На месте 2-ой цифры может также быть 2: 222, 224, 229 и 9: 292, 294, 299. Вот уже 9 вариантов для случая, когда 1-я цифра - 2. По 9 же вариантов будет и для случаев, когда 1-я цифра - 4 и 9. Переберем и их для очистки совести: 4, 2-я цифра - 4: 442, 444, 449; 4, 2-я цифра - 2: 422, 424, 429; 4, 2-я цифра - 9: 492, 494, 499; 9, 2-я цифра - 4: 942, 944, 949; 9, 2-я цифра - 2: 922, 924, 929; 9, 2-я цифра - 9: 992, 994, 999. У нас получилось 9 троек цифр, то есть 27 чисел. Проверь свой ответ, там не 22)))
Многое в поставленной вами задачи зависит от того Какие значения может принимать Х изменяясь в своей области определения . Кроме того важно сразу отметить что если вы ищете аналитическую закономерность (виде некоторой формулы) то её может и не быть.
Если множество значений Х дискретно то можно использовать любой из стандартных методов интерполяции : линейную, дробно- линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д
Приведу пример нахождения интерполяционного многочлена Тейлора по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1; многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2- подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3 а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений: P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1; P(X2)=1+A1*1+A2*1*1=2 P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2 Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости между X и Y. Естественно этот результат не единственен. Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов»