М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
красотка368
красотка368
29.03.2020 08:51 •  Алгебра

Ймовірність якої події дорівнює дробу, значення якого більше за нуль і менше 1?​

👇
Открыть все ответы
Ответ:
Саша039
Саша039
29.03.2020

Если прямая касается параболы, то коэффициент a можно рассчитать как минимум 3мя разными

1)Дискриминант

ax^2+5x+8=-2x+1\\ax^2+7x+7=0

-----

Если прямая касается параболы тогда дискриминант этого уравнения будет равняться нулю.

49-4*a*7=0\\a=\frac{7}{4}

ответ 7/4

2)Теорема виета

Не сильно отличается от первого:

ax^2+5x+8=-2x+1\\ax^2+7x+7=0

если прямая касается параболы, тогда квадратный трехчлен имеет всего один корень, тогда по т. виета:

2x=-\frac{7}{a} \\x^2=\frac{7}{a}

-------------

из 1:

a=-\frac{7}{2x}

подставим в 2:

x^2=-2x\\x=-2\\----\\a=\frac{7}{4}

-------------

ответ 7/4 (менее быстрый метод но зато нам сразу будет известна точка касания)

3)Производная

ax^2+5x+8=-2x+1\\ax^2+7x+7=0

если прямая касается параболы, тогда значение производной прямой в точке касания равно значению производной параболы в точке касания:

ax^2+7x+7=0\\2ax+5=-2 a=\frac{-7}{2x}

подставим в первое:

\frac{-7x}{2}+7x+7=0-7x+14x+14=0x+2=0 x=-2

a=7/4

ответ 7/4 (Опять же не самый быстрый но зато мы сразу узнаем координаты касания)

4,4(58 оценок)
Ответ:
marishakfine
marishakfine
29.03.2020

Таблица точек

 x y

-3.0 -18

-2.5 -8.1

-2.0 -2

-1.5 1.1

-1.0 2

-0.5 1.4

0 0

0.5 -1.4

1.0 -2

1.5 -1.1

2.0 2

2.5 8.1

3.0 18

 Точка пересечения графика функции с осью координат Y:  

График пересекает ось Y, когда x равняется 0: подставляем x=0 в x³-3x.

у =0³-3*0 = 0,

Результат: y=0. Точка: (0; 0.

Точки пересечения графика функции с осью координат X:  

График функции пересекает ось X при y=0, значит, нам надо решить уравнение:  

x³-3x = 0

Решаем это уравнение и его корни будут точками пересечения с X:

x (х²-3) = 0,

х1 = 0,  х2,3 = +-√3.

Результат: y=0. Точки: (0; -√3), (0; 0) и (0; √3).

Экстремумы функции:  

Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:  

y'=3x² – 3 = 0

Решаем это уравнение и его корни будут экстремумами:  

3(х²-1) = 0,

х1 = 1,  х2  = -1.

Результат: y’=0. Точки: (-1; 2) и (1; -2). Это критические точки.

Интервалы возрастания и убывания функции:  

Найдем значения производной между критическими точками:  

x = -2 -1 0          1             2

y' = 9 0 -3          0               9.  

• Минимум функции в точке: х = -1,

• Максимум функции в точке: х = 1.

• Возрастает на промежутках: (-∞; -1) U (1; ∞)  

• Убывает на промежутке: (-1; 1)  

Точки перегибов графика функции:  

Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции:  

y'' = 6x  = 0

Отсюда точка перегиба х = 0

Точка: (0; 0).

Интервалы выпуклости, вогнутости:  

Находим знаки второй производной на промежутках (-∞; 1) и (1; +∞).

                             х =     -1        0         1

                             y'' =    -6        0          6.

Где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый.

• Вогнутая на промежутках: (0; ∞),

• Выпуклая на промежутках: (-∞; 0)  

Вертикальные асимптоты – нет.  

Горизонтальные асимптоты графика функции:  

Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим:  

• lim x3-3x, x->+∞ = ∞, значит, горизонтальной асимптоты справа не существует

• lim x3-3x, x->-∞ = -∞, значит, горизонтальной асимптоты слева не существует

Наклонные асимптоты графика функции:  

Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы:  

• lim x3-3x/x, x->+oo = oo, значит, наклонной асимптоты справа не существует.

• lim x3-3x/x, x->-oo = oo, значит, наклонной асимптоты слева не существует.

Четность и нечетность функции:  

Проверим функцию -  четна или нечетна с соотношений f(-x)=f(x) и f(-x)=-f(x). Итак, проверяем:  

• (-x3)-3(-x) =  -x3+3x   нет,

• (-x3)-3(-x) = -(x3-3x) – да, значит, функция является нечётной.


Решить. если можно, то подробно
4,6(25 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ