Объяснение:
1.
Функция квадратичная, графиком является парабола.
Коэффициент а = 1/4 > 0, значит ветви параболы направлены вверх.
Ось симметрии: х = 0.
График проходит через начало координат.
Находим значения функции в некоторых точках (см. рисунок) и строим график.
Функция возрастает при x ∈ [ 0 ; + ∞ ).
2. у = - 2х²
Функция квадратичная, графиком является парабола.
Коэффициент а = - 2 < 0, значит ветви параболы направлены вниз.
Ось симметрии: х = 0.
График проходит через начало координат.
Находим значения функции в некоторых точках (см. рисунок) и строим график.
Функция возрастает при x ∈( - ∞ ; 0 ]
Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.