Даны точки A(-1;4), B(3;1), C(3,4). Найдите вектор c= 2 CA+3ABОбозначим точку пересечения плоскости β отрезком CD буквой О.
DD1║CC1, CD- секущая, ⇒ накрестлежащие ∠D=∠C, вертикальные углы при О равны, ⇒ ∆ DOD1 подобен ∆ COC1 по первому признаку.
k=CC1:DD1=6/√3:√3=2
Тогда СО=2DO=²/₃ СD
ЕО=СО-СЕ
EO= \frac{2}{3} CD- \frac{1}{2} CD= \frac{1}{6} CDEO=
3
2
CD−
2
1
CD=
6
1
CD
∆ COC1 подобен ∆ EOE1 по первому признаку подобия ( ∠С=∠Е - соответственные при пересечении параллельных прямых ЕЕ1 и СС1 секущей CD, угол О - общий).
k= \frac{CO}{EO} = \frac{ \frac{2}{3} CD}{ \frac{1}{6} CD}= \frac{2*6}{3}= 4k=
EO
CO
=
6
1
CD
3
2
CD
=
3
2∗6
=4 ⇒
E E_{1}= \frac{6}{ \sqrt{3}}:4= \frac{6* \sqrt{3} }{ \sqrt{3}* \sqrt{3} *4}= \frac{ \sqrt{3}}{2} smEE
1
=
3
6
:4=
3
∗
3
∗4
6∗
3
=
2
3
sm
Будем решать в минутах:
1 час 45 минут=105 минут
1 час 15 минут=75 минут
2 часа 55 минут=175 минут
a,b,c,d - производительности 1,2,3,4 трубы
Составляем уравнения:
a+b+c=1/105
a+b+d=1/75
c+d=1/175
Будем решать систему уравнений метод сложения.То есть, складываем все левые части и приравниваем их к сумме вторых частей уравнений:
a+b+c+a+b+d+c+d=1/175+1/75+1/105
2a+2b+2c+2d=1/105+1/75+1/175
2(a+b+c+d)=1/35
a+b+c+d=1/35:2=70
Значит, если включить все 4 трубы, то бассейн заполнится за 70 минут или 1 час и 10 минут.
BC =
Просто подставь под формулу..это все дано..найдешь 3-ую сторону
Потом воспользуйся теоремой синусов:
"Отношение стороны к синусу противоположного угла равно отношению другой стороны к синусу противоположного угла"
Т.е.
Просто подставляешь - пишешь ответ - получаешь "5"