Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
ответ: функция имеет максимум zmax=12 в точке M(4;4).
Объяснение:
1) Находим первые частные производные:
z'x=y/(2*√x)-1, z'y=√x-2*y+6
Приравнивая их к 0, получаем систему уравнений:
y/(2*√x)-1=0
√x-2*y+6=0
Решая её, находим x=4 и y=4 - координаты единственной критической (стационарной) точки M.
2) Находим вторые частные производные:
z"xx=-y/(4*√x³), z"xy=1/(2*√x), z"yy=-2
и вычисляем их значения в точке M:
A=z"xx(M)=-1/8, B=z"xy(M)=1/4, C=z"yy(M)=-2
3) Составляем выражение A*C-B² и находим его значение. Оно равно 3/16>0, поэтому функция z действительно имеет экстремум в точке М. И так как при этом A<0, то это - максимум. Его значение zmax=4*√4-4²-4+6*4=12.