Коротко: Наша цель найти k и b, чтобы подставить их в уравнение прямой y = kx + b.
Подробное решение:
Рассмотрим 1ую функцию:Возьмем произвольную точку; пусть это будет точка A(0; 0). Мы видим по графику, что это прямая. Уравнение прямой: y = kx + b (в некоторых учебниках пишут y = kx + m разницы нет вообще (только буква другая) ).
Мы смотрим, какой x у точки A (т.е. на 1ое число после скобки A(x; y) ). Видим, что x = 0. Аналогично и y = 0. Подставим эти значения в формулу. Вместо y (в формуле y = kx + b) идет 0; вместо x тоже 0, но его мы уже подставляем суда: y = kx + b. Получим: 0 = 0 + b. Это простейшее линейное уравнение. Хорошо видно, что b = 0.
Отлично, b нашли. Теперь найдем k. Возьмем любую другую точку, где x не равен 0. Пусть это будет точка B(2; 1). Помнишь как найти x и y этой точки? Правильно: x = 2, y = 1 (т.к. B(x; y) ). Подставим их в уравнение прямой y = kx + b (мы не забываем про b, его мы уже знаем). Получили: 1 = k * 2 + 0. Простое линейное уравнение. Решив его, увидим, что k = 0.5.
Теперь подставим k и b в наше уравнение прямой. Результатом всех наших действий стала формула уравнения прямой 1ой функции. ответ на 1ую задачу: y = 0.5x
Рассмотрим 2ую функцию:Я бы сказал, она самая простая. Y здесь фиксированный и не меняется при изменении x! Поэтому в таких случаях мы просто пишем y = 2. Эта функция всегда дает нам значение 2. Применять алгоритм из 1ого примера ни в коем случае не нужно.
Рассмотрим 3ью функцию:Применим алгоритм из 1ого примера. Возьмем точку A(0; 3). 3 = 0 + b => b = 3. Возьмем точку B(2; 0). 0 = 2 * k + 3 => k = -1.5. Все просто! ответ: y = -1.5k + 3
ответ: 5 ластиков=50грн
6 тетрадей=30грн
Объяснение: пусть ластик будет х, а тетрадь у. Зная что за 2 ластика и 3 тетради уплатили 35грн, то первое уравнение будет выглядеть так:
2х+3у=35. За две тетради уплатили 2у, а за 3 ластика 3х, всё это вместе стоило 40грн. 2-е уравнение будет выглядеть так: 3х+2у=40. Итак:
{2х+3у=35
{3х+2у=40|÷2
{2х+3у=35
{1,5х+у=20
{2х+3у=35
{у=20-1,5х
Теперь подставим значение у в первое уравнение: 2х+3у=35
2х+3(20-1,5х)=35
2х+60-4,5х=35
- 2,5х=35-60
- 2,5х= - 25
х= -25÷(- 2,5)
х=10; мы нашли стоимость 1 ластика. Теперь найдём стоимость 1 тетради, подставив значение х в: у=20-1,5х:
у=20-1,5×10=20-15=5грн; мы нашли стоимость 1 тетради. Теперь найдём стоимость 5 ластиков и шести тетрадей:
5 ластиков=10×5=50грн
6 тетрадей=5×6=30грн