q^(n-1)=256 (1-q^n)=341*(1-q) или, что то же самое: (q^n-1)=341*(q-1) Вероятно, все ж , q -целое, тогда либо q=2 n=9 либо 4 n=5 либо 16 n=3 256 n=2 Легко видеть, что годится только q=4 n=5 ответ: q=4 n=5 б) 243* (3^(-n)+1)=182*(1/3+1) 243*(1-(-3)^(-n))=182*4/3 729 -3^6*(-3)^(-n)==728 (3^6)*(-3)^(-n)=1 ответ: n=6 an=243*(-1/(3^5))=-1
Пусть печенья купили х кг, а конфет - у кг, тогда можно записать систему уравнений: В первом уравнении показали что сумма печенья и конфет равна 38 кг, а во втором показали что сумма стоимости конфет и стоимости печенья равна 2080 руб. (стоимость печенья 50*х, а стоимость конфет 60*у). Решаем систему уравнений, выразим х через у и подставим во второе уравнение; Нашли сколько купили конфет - 18 кг. Теперь найдём сколько купили печенья: x+18=38 x=38-18 x=20 (кг)
3*(1-q^n)=1023*(1-q)
q^(n-1)=256
(1-q^n)=341*(1-q) или, что то же самое: (q^n-1)=341*(q-1)
Вероятно, все ж , q -целое, тогда либо q=2 n=9
либо 4 n=5
либо 16 n=3
256 n=2
Легко видеть, что годится только q=4 n=5
ответ: q=4 n=5
б) 243* (3^(-n)+1)=182*(1/3+1)
243*(1-(-3)^(-n))=182*4/3
729 -3^6*(-3)^(-n)==728
(3^6)*(-3)^(-n)=1
ответ:
n=6
an=243*(-1/(3^5))=-1