М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
afsanka98
afsanka98
31.03.2023 01:12 •  Алгебра

Исследуйте функцию у=-|х|/2+х^4+1 на четность

👇
Ответ:
kolyakuzmin2006
kolyakuzmin2006
31.03.2023
Y(-x) = -|-x|/2 + (-x)^4 +1 = -x/2 + x^4 + 1 - четная
4,5(45 оценок)
Открыть все ответы
Ответ:
MostQweek
MostQweek
31.03.2023
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид

(
a
+
b
)
n
=

k
=
0
n
(
n
k
)
a
n

k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n

1
b
+

+
(
n
k
)
a
n

k
b
k
+

+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n

k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.

В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
4,6(39 оценок)
Ответ:

Для построения функции нужно проанализировать ее уравнение.

Очевидно, что функция содержит квадрат аргумента, следовательно, такая функция является квадратной. Графиком же квадратной функции будет парабола.

Узнаем, как будут направлены ветви параболы. Для этого обратим внимание на знак перед х в квадрате. Условно перед ним стоит знак «плюс», а это значит, что ветви параболы будут смотреть вверх.

Также парабола существует для любых значений аргумента х.

Найдем координаты точки, которая является вершиной параболы. Для этого используем известные формулы:

(ВЛОЖЕНИЕ №1)

Получили вершину данной параболы в начале координат.

В принципе, выше приведенных вычислений можно было и не выполнять, так как мы имеем простейшее уравнение параболы, для которой известно, что она симметрична координатной оси Оу и ее вершина совпадает с точкой (0; 0).

Также необходимо вычислить некоторые точки, которые построить данную параболу.

Подберем любые значения аргумента х и найдем соответствующие им значения функции. Возьмем простейшие значения х, чтобы удобнее было считать:

(ВЛОЖЕНИЕ №2)


Y=x^2 графигын табыныз
Y=x^2 графигын табыныз
4,8(2 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ