М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
buzovkina81
buzovkina81
20.05.2023 03:45 •  Алгебра

Реите неравенство7-9х< -4х+13​

👇
Ответ:
ffggshwheehejsj
ffggshwheehejsj
20.05.2023

х>-1,2

Объяснение:

7-9х<-4х+13

7-9х+4х-13<0

-5х-6<0/:(-1)

5х+6>0

5х>-6

х>-1,2

4,8(36 оценок)
Открыть все ответы
Ответ:
gulkogulkovno
gulkogulkovno
20.05.2023

f(x) = x³ - 3x      [0 , 2]

Найдём производную :

f'(x) = (x³)' - 3(x)' = 3x² - 3

Найдём нули производной :

3x² - 3 = 0

3(x² - 1) = 0

x² - 1 = 0

x₁ = - 1      x₂ = 1

Только x = 1 ∈ [0 ; 2]

Определим знаки производной на отрезке [0 , 2] :

                               -                       +

[0][1][2]

                                         min

В точке x = 1 функция имеет минимум, который является наименьшим значением на заданном отрезке. Найдём это наименьшее значение :

f(1) = 1³ - 3 * 1 = 1 - 3 = - 2

Найдём значения функции на концах отрезка :

f(0) = 0³ - 3 * 0 = 0

f(2) = 2³ - 3 * 2 = 8 - 6 = 2

ответ : наименьшее значение равно - 2 ,  а наибольшее равно 2 .

4,8(95 оценок)
Ответ:
Ьала
Ьала
20.05.2023

если a < 0, нет точек пересечения,

если а = 0, бесконечно много точек пересечения,

если а > 0. одна точка пересечения.

Объяснение:

Графический метод.

1) Построим график функции у = |x| (красный график)

Так как |x| = x при x ≥ 0, то для x ≥ 0 графиком является луч с началом в точке (0; 0), биссектриса первой координатной четверти.

Так как |x| = - x при x < 0, то для x < 0 графиком является часть прямой у = - х, расположенная во второй координатной четверти.

2) Построим график функции  у = х + а (зеленый график) для различных значений а.

Графиком этой функции является прямая, проходящая под углом 45° к положительному направлению оси Ох, и пересекающая ось Оу в точке (0; а).

Если а < 0, то прямая проходит ниже графика функции у = |x| и не пересекает его.Если а = 0, то прямая проходит через начало координат и совпадает с частью графика функции y = |x|, тогда бесконечно много общих точек.Если а > 0, то прямая пересекает график функции y = |x| в одной точке.

Аналитический метод:

1) a < 0

|x| = x + a

Если х ≥ 0, то  x = x + a

                        a = 0

но а < 0, значит точек пересечения нет.

Если х < 0, то - x = x + a

                       - 2x = a

здесь левая часть положительна, правая - отрицательна, значит нет точек пересечения.

2) а = 0

|x| = x

равенство верно, для любых x ≥ 0.

Бесконечно много общих точек.

3) а > 0

Если x ≥ 0, то x = x + a

                       a = 0

но а > 0, значит точек пересечения нет.

Если x < 0, то - x = x + a

                       - 2x = a

обе части положительны, значит для каждого а > 0 найдется значение х, при котором равенство будет верно, следовательно одна точка пересечения.


Определите число точек пересечения графиков функций y=|x| и y=x+a для каждого значения числа a.
4,7(15 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ