(x - 7)*(3x + 1) = (x + 5)^2, 3x^2 - 20x - 7 = x^2 + 10x + 25, 2x^2 - 30x - 32 = 0, x^2 - 15x - 16 = 0, x^2 + x - 16x - 16 = 0, x(x + 1) - 16(x + 1) = 0, (x + 1)*(x - 16) = 0, x + 1 = 0 или x - 16 = 0, x = -1 или x = 16. Искомые числа: 1) если х = -1, то - это -1 - 7 = -8, -1 + 5 = 4 и 3*(-1) + 1 = -2; 2) если х = 16, то это числа 16 - 7 = 9, 16 + 5 = 21 и 3*16 + 1 = 49. Действительно, в случае (1) первое число -8, второе -8*(-0,5) = 4 и третье 4*(-0,5) = -2, а в случае (2) первое 9, второе 9*(7/3) = 21 и третье 21*(7/3) = 49. ответ: 1) -8, 4 и -2; 2) 9, 21 и 49. Пояснение. При решении задание использовано свойство членов геометрической прогрессии, в котором произведение двух членов прогрессии равно квадрату того ее члена, который расположен ровно посередине между первыми двумя членами. Удачи!
1) Среди чисел на кубике делителем 6 являются: 1, 2, 3, 6. Поэтому p = 4/6 = 2/3.
2) У холодильника 6 граней. Если он должен храниться лишь, стоя дном вниз, в остальных случаях он хранится неправильно. Вероятность этого события p = 5/6.
3) ОО, ОР, РО, РР. Благоприятными являются 3 события.
4) Каждый из 3 детей может оказаться либо девочкой, либо мальчиком. Поэтому событие "приход трёх детей" имеет 2³ = 8 исходов. При этом событие "две девочки и один мальчик" происходит в 3 случаях. Мальчик приходит только первым, только вторым или только третим. Поэтому вероятность этого события: p = 3/8.
5) Событие имеет 2⁴ = 16 исходов. Решка выпадает больше раз чем орёл => решка выпадает 3 или 4 раза => орёл выпадает 1 или 0 раз. Орёл может выпасть 1 раз четырьмя только в 1-й, только во 2-й, только в 3-й или только в 4-й раз. Орёл может выпасть 0 раз только одним Т. е. благоприятных исходов: 4 + 1 = 5. И вероятность p = 5/16.