Задача сводится к взятию производной от функции для поиска максимума и минимума, а также проверке значений на концах отрезка.
y' = x² - 1
критические точки
x² - 1 = 0 ⇔ x = -1, x = 1 ⇒ x=-1 не входит в нашу область по условию 0 ≤ x ≤ 4
___-1___+___0-1+4+_
y' > 0 на интервале x∈(-∞, -1)U(1, +∞)
y' < 0 при x∈(-1, 1)
производная меняет свой знак с + на - при x = -1 - это точка максимума (но по условию мы ее не рассматриваем)
c - на + при x = 1 - это точка минимума.
Найдем значение функции в этих точках:
y(1) = -2/3
Также проверим на концах отрезка [0, 4]
y(0) = 0
y(4) = 52/3
Максимум достигается при x = 4 - y = 52/3
Минимум при x = 1 - y = -2/3
2(x² + x + 1)² - 7(x - 1)² = 13(x³ - 1)
Введём две новые переменные:
u = x² + x + 1
v = x - 1
Тогда уравнение примет вид:
2u² - 13uv - 7v² = 0
Это однородное уравнение второй степени, делим обе части на v²
2u² - 13uv - 7v² = 0 / v²
2*(u/v)² - 13*(u/v) - 7 = 0
Замена: u/v = y
2y² - 13y - 7 = 0
D = 169 - 4*2*(-7) = 225
y₁ = (13 + 15) / 4 = 7
y₂ = (13 - 15) / 4 = -1/2
Значит, u/v = 7 отсюда u = 7v
или u/v = -1/2 отсюда v = -2u
Вернёмся к переменной x с соотношением u = 7v:
x² + x + 1 = 7(x - 1)
x² + x + 1 = 7x - 7
x² - 6x + 8 = 0
x₁ = 2; x₂ = 4
Вернёмся к переменной x с соотношением v = -2u:
x - 1 = -2(x² + x + 1)
x - 1 = -2x² - 2x - 2
2x² + 3x + 1 = 0
D = 9 - 4*2*1 = 1
x₁ = (-3 + 1) / 4 = -1/2
x₂ = (-3 - 1) / 4 = -1
ответ: 2; 4; -1; -1/2