1) у коли было 30 рублей. на мороженое он истратил 30% своих денег. сколько стоит мороженое? 2) токарю нужно было сделать 120 деталей, но он но он перевыполнил план на 10%. сколько деталей сделал токарь? только с решением!
Понимаем, что попадание первым стрелком р1, непопадание q1, причем p1+q1=1 Так же р2+q2=1 Событие А -"цель поражена один раз:либо первым, а вторым нет; либо вторым, а первым нет" Его вероятность равна сумме произведений р1 ·q2+q1·p2 По условию это равно 0,46.
Событие В - цель не поражена ни разу Его вероятность q1·q2 и по условию его вероятность равна 0,42. Рассмотрим ещё событие С- попадание хотя бы один раз. Оно противоположно событию В и его вероятность равна 1-0,42=0,58 С состоит из А и события "попадание оба раза" значит р1·р2+р1 ·q2+q1·p2=0,58. Имеем три уравнения и из них найдем р1·р2=0,58-0,46 р1·р2=0,12 Это возможно, если р1=0.2, р2=0,6 или вторая пара р1=0,3 ; р2=0,4 тогда q1=0,8; q2=0,4 или пара q1=0,7; q2=0,6 Учитывая, что вероятность события В равна 0,42. Подходит вторая пара. ответ р1=0,3; р2=0,4 р1= ; р2= ;
Любое нечётное число можно записать в виде 2n-1, где n∈z (множество целых чисел). у нас три последовательных нечётных числа. каждое последующее нечётное число на 2 больше предыдущего (например, 1, 3, 5, 7 и так далее). обозначим минимальное из наших чисел 2n-1. тогда следующее будет 2n-1+2=2n+1, а последнее 2n+1+2=2n+3. эти числа в порядке возрастания расположатся, очевидно: 2n-1; 2n+1; 2n+3. по условию : (2n+1)(2n+-1)(2n+1)=76 (2n+1)(2n+3-(2n-=0 (2n+1)(2n+3-2n+1)-76=0 (2n+1)4-76=0 8n+4-76=0 8n-72=0 n=72/8 n=9 тогда искомые числа будут: 2n-1=2*9-1=18-1=17 2n+1=2*9+1=18+1=19 2n+3=2*9+3=18+3=21