1) на отрезке [0;3] функция y=x³-4 возрастает, поэтому наименьшее значение она принимает при x=0, и оно равно 0-4=-4, а наибольшее - при x=3, и оно равно 3³-4=23.
2) перепишем функцию в виде y=-3x-1. Эта функция убывает на всей числовой оси, поэтому Ymax=y(-2)=5 и Ymin=y(0)=-1.
3) Функция убывает на промежутке [π/3;π/2) и возрастает на промежутке (π/2;5*π/6]. При этом y(π/3)=1-√3<y(5*π/6)=0, поэтому Ymax=y(5*π/6)=0, а Ymin=y(π/2)=-1
4) На промежутке [0;π/2] функция y=1+sin(x), а вместе с ней и функция y1=√(1+sin(x)) возрастают. Поэтому Ymin=y1(0)=1, а Ymax=y1(π/2)=√(1+1)=√2
1) D(x)=(-беск,+беск) , потому что икс можно взять любой 2) В знаменателе не может быть нуль, поэтому х-2 не может равняться нулю, т.е. х не равняется 2, т.е. D(x)=(-беск, 2) U (2,+беск), где U - знак объединения 3) под корнем не может быть отрицательное число+ в знаменателе не долджен быть нуль, значит подкоренное выражение должно быть положительным 6-3х>0, значит х<2 тогда D(x)=(-беск,2) 4) под корнем должно быть неотриц.число, т.е. х^2-3x-4 больше или равно нуля. (x+1)(x-4) больше или равно 0, значит x принадлежит (-беск, -1] и [4,+беск), т.е. D(x)=(-беск, -1] U [4,+беск)