М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Otlichnoik
Otlichnoik
11.05.2021 03:34 •  Алгебра

1. Добавить нисходящую функцию 2. Определите, какое условие выполняется, если ( 1/4 )^k > 1/4

3. Вычислите log₅25


1. Добавить нисходящую функцию 2. Определите, какое условие выполняется, если ( 1/4 )^k > 1/4 3.

👇
Ответ:
tolkacheva2005
tolkacheva2005
11.05.2021

1) Убываюшая функция :

f(x)=(\frac{1}{5})^{x} , так как   0

2)(\frac{1}{4})^{k} \frac{1}{4}\\\\0

4,6(55 оценок)
Ответ:
lod2003
lod2003
11.05.2021

↓↓↓

Объяснение:

1)убывающая Б , тк основание <1

2) ответ А , т.к  0<1\4<1   и ф. убывающая

3)㏒₅ 25 =2, тк логариф это показатель степени 5 . А 5²=25

4,8(34 оценок)
Открыть все ответы
Ответ:
Xzxzxzxzxzzxzxz
Xzxzxzxzxzzxzxz
11.05.2021
Уравнение четвёртой степени имеет вид:
   \alpha _0x^4+ \alpha _1x^3+ \alpha _2x^2+ \alpha _3x+ \alpha _4=0
Разделим обе части на коэффициент \alpha _0, получаем
             x^4+ \alpha x^3+ bx^2+cx+d=0
где a, b, c, d –  произвольные вещественные числа.

Уравнения вида приводится уравнение четвёртой степени, у которых отсувствует третьей степени., поэтому нужно сделать замену переменных, тоесть
   x=i- \frac{ \alpha }{4}, где \alpha - коэффициент перед х^3 и 4 - произвольные вещественные числа

В нашем случае такое уравнение: x^4+6x^3-21x^2+78x-16=0
Заменим x=i- \frac{6}{4} =i-1.5, получаем
 (i-1.5)^4+6(i-1.5)^3-21(i-1.5)^2+78(i-1.5)-16=0\\ i^4-6i^3+13.5i^2-13.5i+5.0625+6i^3-27i^2+40.5i-20.25-21i^2+\\+63i-47.25+78i-117-16=0\\ i^4-34.5i^2+168i-195.4375=0

Получаем кубическое уравнение: 2s^3-ps^2-2rs+rp- \frac{q^2}{4}=0
В нашем случае: p=-34.5;\,\,\,\,q=168;\,\,\,\,r=-195.4375
Подставляем и получаем уравнение
  2s^3+34.5s^2+2\cdot195.4375s+34.5\cdot195.4375- \frac{168^2}{4}=0\\ 64s^3-1104s^2+12508s-10029=0
Разложим одночлены в сумму нескольких
   64s^3-48s^2+1152s^2-864s+13372s-10029=0
Выносим общий множитель
16s^2(4s-3)+288s(4s-3)+3343(4s-3)=0\\ (4s-3)(16s^2+288s+3343)=0\\ s=0.75
Уравнение 16s²+288s+3343=0 решений не имеет, так как D<0

Таким образом для решения уравнения остается квадратное уравнение
i^2+i \sqrt{2s-p} - \frac{q}{2\sqrt{2s-p}}+s=0
Заменяем
  i^2+i\sqrt{2\cdot0.75+34.5}- \frac{168}{\sqrt{2\cdot0.75+34.5}} +0.75=0\\ 4i^2+24i-53=0\\ D=b^2-4ac=576+848=1424\\ i= \dfrac{-6\pm \sqrt{89} }{2}

Возвращаемся к замене
  x=i-1.5=\dfrac{-6\pm \sqrt{89} }{2}- \dfrac{3}{2} =\dfrac{-9\pm \sqrt{89} }{2}

Окончательный ответ: \dfrac{-9\pm \sqrt{89} }{2}.
4,6(12 оценок)
Ответ:
mahamde
mahamde
11.05.2021
1. 1)Преобразует левую часть уравнения так, чтобы получился квадрат выражения с х. х^2-4х+3=0, (х^2-2*(2*х)+4)-4+3=0, (х-2)^2-1=0, (х-2)^2=1, х-2=1 или х-2=-1, х=3 или х=1. 2) представим левую часть в виде произведения: х^2+9х=0, х(х+9)=0, х=0 или х=-9. 2. Подставим в уравнение известный корень и найдем а: 4^2+4-а=0, 16+4-а=0, а=20. Разложим левую часть на множители, зная что один из них (х-4): х^2+х-20=х2-4х+4х+х-20=х(х-4)+5х-20=х(х-4)+5(х-4)=(х-4)(х+5), то есть (х-4)(х+5)=0, второй корень х=-5. ответ: а=20, второй корень (-5). Во втором задании можно просто подставить а и решить уравнение, найдя 2 корня.
4,5(50 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ