2. Побудуйте графік функції у=х2 - 2х - 3. Користуючись графіком, знайдіть: 1) у(2); у(-1,5); у(2,5).
2) значення х, при яких у(х)=5; у(х)=-4; у(х)=-1
3) найбільше і найменше значення функції; 4) область значень функції;
5) проміжок зростання і проміжок спадання функції;
6)множину розв’язків нерівності у(х)<0; у(х)>0.
f(x) = -x^4/4 - x^3/3 + 3x + 1
f ' (x) = -x^3 - x^2 + 3 = 0
Корни, очевидно, иррациональные, найдем примерно подбором.
f ' (0) = 3 > 0
f ' (-1) = 1 - 1 + 3 = 3 > 0
f ' (-2) = 8 - 4 + 3 = 7 > 0
Брать x < -2 бессмысленно, дальше все значения f ' (x) > 0
f ' (1) = -1 - 1 + 3 = 1 > 0
f ' (2) = -8 - 4 + 3 = -9 < 0
Единственный экстремум (максимум) находится на отрезке (1; 2).
Можно уточнить
f ' (1,2) = -(1,2)^3 - (1,2)^2 + 3 = -0,168 < 0
f ' (1,18) = -(1,18)^3 - (1,18)^2 + 3 = -0,035 < 0
f ' (1,17) = -(1,17)^3 - (1,17)^2 + 3 = 0,0295 > 0
f ' (1,175) = -(1,175)^3 - (1,175)^2 + 3 = -0,003 ~ 0
x ~ 1,175; f(x) ~ -(1,175)^4/4 - (1,175)^3/3 + 3(1,175) + 1 ~ 3,5077
ответ: максимум: (1,175; 3,5077); минимума нет.