Пусть мы имеем неравенство с двумя переменными одного из следующих видов:y > f(x); y ≥ f(x); y < f(x); y ≤ f(x).Для изображения множества решений такого неравенства на координатной плоскости поступают следующим образом:1. Строим график функции y = f(x), который разбивает плоскость на две области.2. Выбираем любую из полученных областей и рассматриваем в ней произвольную точку. Проверяем выполнимость исходного неравенства для этой точки. Если в результате проверки получается верное числовое неравенство, то заключаем, что исходное неравенство выполняется во всей области, которой принадлежит выбранная точка. Таким образом, множеством решений неравенства – область, которой принадлежит выбранная точка. Если в результате проверки получается неверное числовое неравенство, то множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.3. Если неравенство строгое, то границы области, то есть точки графика функции y = f(x), не включают в множество решений и границу изображают пунктиром. Если неравенство нестрогое, то границы области, то есть точки графика функции y = f(x), включают в множество решений данного неравенства и границу в таком случае изображают сплошной линией. ну вообще это основное, а там уже смотри по заданию как))
В итоге x = +-p/3 + 2pn, x = p/4 + pn. Так как нас интересуют значения х на промежутке [3p/2;3p], т.е 1.5р...3р, то подходят 2p - p/3, 2p + p/4, 2p + p/3.
ответ: 2p + p/3, 2p - p/3, 2p + p/4.
2) sinx+1/1-cos2x=sinx+1/1+cos(p/2+x) (s+1)/(2*s*s) = (s + 1)/(1 - s)
ОДЗ: sin(x) <> 0 => x <> pn sin(x) <> 1 => x <> p/2 + 2pn
s + 1 = 0 => sin(x) = -1 => x = 2pn - p/2 2s*s = 1 - s 2s*s + s - 1 = 0
Решим как квадратное уравнение: s1 = 2/4 = 0.5 => sin(x) = 0.5 => x = (-1)^n*(p/6) + pn s2 = -4/4 = -1 (такие корни уже были)
В итоге: x = 2pn - p/2, x = (-1)^n*(p/6) + pn. Причем x <> pn, x <> p/2 + 2pn. По условию нужно выбрать корни на промежутке [-3p/2;-p/2], т. е. от -1.5р до -0.5р.
2pn - p/2: при n = 1: x = -1.5p, но так как x <> p/2 + 2pn, этот корень не подходит. при n = 0: x = -0.5p.
{ -х + 2у = 6 | • (-2)
{ х + 4у = 18
2х - 4у = -12
х + 4у
2х - 4у + х + 4у = -12+18
3х = 6
х = 2
подставляем значение х во второе уравнения
2 + 4у = 18
4у= 16
у = 4
(2;4)