М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Среднячёк
Среднячёк
16.08.2022 07:22 •  Алгебра

Користуючись графіками функції y=f(x) з'ясуйте:
Область визначення функції
Нулі функції і інтервали її знакосталості
Точки екстремуму, екстремальні значення функції та інтервали її монотонності
Приклад на зображенні


Користуючись графіками функції y=f(x) з'ясуйте: Область визначення функції Нулі функції і інтервали

👇
Открыть все ответы
Ответ:
FlowerBlue17
FlowerBlue17
16.08.2022
3а (2,5а3), (5ab2) • (0,4c3d) • 3/4 – это одночлены, выражение a + b одночленом не является, т. к. содержит в себе операцию сложения. Каждый одночлен можно привести к стандартному виду, т. е. представить его в виде произведения числового множителя, стоящего на 1м месте, и степеней различных переменных. Стандартный вид одночлена: числовой множитель + переменная (например, 5а) , где числовой множитель называется коэффициентом одночлена, т. е. в одночлене 5а 5 является коэффициентом одночлена. Степенью одночлена называется сумма показателей степеней всех переменных. Произведением исходных одночленов называются все одночлены, записанные со знаком умножения между ними: 3а • (2,5а3).Закрепим материал. Пример. Привести к стандартному виду одночлен 3а (2,5а3).Решение. 1. Стандартный вид одночлена подразумевает наличие коэффициента и переменной, т. е. наш многочлен должен принять вид Ха, где Х – коэффициент, а а – переменная. 2. Сгруппируем элементы так, чтобы отдельно оказались числа, отдельно – переменные (для этого нам нужно воспользоваться законами умножения) : 3а (2,5а3) = (3 • 2,5) • (а • а3) = 7,5 • а4 = 7,5а4, т. е. мы привели одночлен 3а (2,5а3) к его стандартному виду 7,5а4.ответ. 7,5а4.Одночлены, которые мы получили, т. е. одночлены стандартного вида, называются подобными, а сложение и вычитание таких одночленов называется приведением подобных. Многочлен представляет собой сумму одночленов. Стандартным видом многочлена является многочлен, полученный в результате приведения всех одночленов к стандартной форме и приведения подобных. Пример. Приведем к стандартному виду многочлен (3a + 5b – 2c) + (2a – b + 4c).Решение. 1. Раскроем скобки. Перед обоими скобками стоит знак «+», поэтому знаки не меняются. Выражение примет вид: 3a + 5b – 2c + 2a – b + 4c.2. Приведем подобные: 3a + 2a + 5b – b – 2c + 4c = 5a + 4b + 2c.ответ: 5a + 4b + 2c.Иногда для приведения многочлена к стандартному виду мы можем воспользоваться формулами сокращенного умножения, основанными на тождестве. Эти формулы необходимо запомнить, чтобы впоследствии ими можно было оперативно пользоваться. 1. (а + b)(а – b) = а2 – b2.2. (а + b)2 = а2 + 2аb + b2.3. (а – b)2 = а2 – 2аb + b2.4. (а + b)(а2 – аb + b2) = а3 + b3.5. (а – b) (а2 + аb + b2) = а3 – b3.6. (а + b)3 = а3 + 3а2b + 3аb2 + b3.7. (а – b)3 = а3 – 3а2b + 3аb2 – b3.Рассмотрим несколько примеров на использование формул сокращенного умножения. Пример 1.(3х2 + 4y3)(3х2 – 4y3).Решение. Воспользуемся формулой сокращенного умножения № 1. Получится, что перед нами «развернутая» разность квадратов, которую нужно «свернуть» в формулу: (3х2 + 4y3)(3х2 – 4y3) = (3х2)2 – (4y3) 2 = 9х4 – 16y6.Т. о. , (3х2 + 4y3)(3х2 – 4y3) = 9х4 – 16y6.Пример 2.(a + b – c) (a + b + c).Решение. 1. Сгруппируем компоненты в скобках так, чтобы получить разность квадратов:
(a + b – c) (a + b + c) = ((a + b) – c)((a + b) + c).
2. «Свернем» формулу разности квадратов и получим:
((a + b) – c)((a + b) + c) = (a + b)2 – с2.3. Раскроем скобки:
(a + b)2 – с2 = а2 + 2аb + b2 – с2.Т. о. , (a + b – c)(a + b + c) = а2 + 2аb + b2 – с2.Пример 3.(3а + 1)(9а2 – 3а + 1).Решение. Воспользуемся формулой №4 – формулой суммы кубов и «свернем» наше выражение:
(3а + 1)(9а2 – 3а + 1) = (3а) 3 + 1 = 27а3 + 1.Т. о. , (3а + 1)(9а2 – 3а + 1) = 27а3 + 1.
[ссылка появится после проверки модератором]
4,7(71 оценок)
Ответ:
Ернай
Ернай
16.08.2022
1) Решите уравнения. Пусть V-квадратный корень.
1) 6x^2-5x+1=0
D=(-5)^2-4*6*1=25-24=1
x1=(-(-5)-V1)/2*6=(5-1)/12=4/12=1/3
x2=(-(-5)+V1)/2*6=(5+1)/12=6/12=1/2;
2) x^2+7x=0
x*(x+7)=0
x1=0
x2+7=0
x2=-7
3) x^3-9x=0
x*(x^2-9)=0
x1=0
x^2-9=0
x^2=9
x2=-3
x3=3;
4) (x^2-x)^2-5(x^2-x)-6=0
(x^2-x)=a
a^2-5a-6=0
D=(-5)^2-4*1*(-6)=25+24=49
a1=(-(-5)-V49)/2*1=(5-7)/2=-2/2=-1
a2=(-(-5)+V49)/2=(5+7)/2=12/2=6
(x^2-x)=-1
x^2-x+1=0
D=(-1)^2-4*1*1=1-4=-3, так как D<0-нет корней уравнения;
x^2-x=6
x^2-x-6=0
D=(-1)^2-4*1*(-6)=1+24=25
x1=(-(-1)-V25)/2*1=(1-5)/2=-4/2=-2
x2=(-(-1)+V25)/2*1=(1+5)/2=6/2=3
2) Составить квадратное уравнение, корни которого -3 и 4.
(x-x1)*(x-x2)=(x-(-3))*(x-4)=(x+3)*(x-4)=x^2-4x+3x-12=x^2-x-12;
3) Разность корней квадратного уравнения x^2 +3x+q=0 равна 7.Найдите q.
x1-x2=7
По т.Виета x1+x2=-p
x1*x2=q
{x1-x2=7
{x1+x2=-3- получили систему уравнений. Сложим уравнения и получим:
2x1=4
x1=4/2=2-Данный корень подставим во второе уравнение системы.
x1+x2=-3
x2=-3-x1
x2=-3-2
x2=-5
x1*x2=2*(-5)=-10
x^2+3x-10=0;
4) Выделив квадрат двучлена,найдите наименьшее значение выражения x^2-2x+2=x^2-2x+1+1=(x+1)^2+1; 5) Найдите два последовательных натуральных числа, если их сумма больше суммы их квадрата на 60. Пусть x-одно число, (x+1)-второе число. Тогда (x+x+1)^2=x^2+(x+1)^2+60 4x^2+1=x^2+x^2+2x+1+60 4x^2+1-2x^2-2x-61=0 2x^2-2x-60=0|:2 x^2-x-30=0 По т.Виета x1+x2=-1 x1*x2=-30 x1=-6-не является решением. x2=5. Тогда первое число x =5 Второе число х+1=6 ответ: 5 и 6.
4,4(24 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ