1) (sin(2t))/(1+cos(2t)) *((сost)/(1+cos(t)) =
(((2sint)*(cost))/(2cos²t))*(cost/(2cos²(t/2)))=(tgt)*cost/(2cos²(t/2))=
(sint)/(2cos²(t/2))=(2sin(t/2))*cos(t/2)/(2cos²(t/2))=tg(t/2)
Bоспользовался дважды формулой (1+cosα)=2cos²α ; формулой синуса двойного аргумента sin2α=2(sinα)*(cosα) и tgα=sinα/cosα.
2) Докажем второе тождество, используя те же формулы.
((sin(2t))/(1+cos(2t)))*(cost/(1+cost))*(cos(t/2))/(1+cos(t/2))=tg(t/4)
1) упростим ((sin(2t))/(1+cos(2t)))=(2sint)(сost)/(2cos²t)=sint/(cost)=tgt
2) умножим (tgt)*(cost/(1+cost))=(sint)/(2cos²(t/2))=
(2sin(t/2))*(cos(t/2))/(2cos²(t/2))=tg(t/2)
3) умножим (tg(t/2))*((cos(t/2))/(1+cos(t/2))=sin(t/2)/(2cos²(t/4)=
(2sin(t/4)*(cos(t/4))/(2cos²(t/4))=tg(t/4)
Требуемое доказано.
1) Пробуем разделить один многочлен на другой в столбик, получается:
(n^9 + 7) / (n^2 + 1) = (n^7 - n^5 + n^3 - n) - это целая часть, остаток (n+7).
2) Чтобы дробь была целым числом, нужно чтобы остаток от деления многочленов равнялся 0. Это возможно при (n+7)=0, n=-7 -целое число.
3) Очевидно, что при n=0 - дробь также является целым числом.
4) Дробь будет целым числом, если числитель будет равен знаменателю:
n^9 + 7 = n^2 + 1 - решая это уравнение, целочисленных значений n не получится. Значит, данный вариант не подходит для рассмотрения.
ответ: n=0, -7