М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ludarudenko98
ludarudenko98
28.02.2020 17:27 •  Алгебра

3. Для каждого выражения из левого столбца найдите ему тождественно равное выражение из правого столбца.
A) (x — 1)(х+ 1)
Б) (х+1)2
В) (х – 1)2
Г) х3 + 1.
1) (x — 1)(х+х+1)
2) х2 - 2x +1
3) (х+1)(х? – x+1)
4) x- 1.
5) x + 2х + 1
6) х? +1​

👇
Открыть все ответы
Ответ:
artemikochan
artemikochan
28.02.2020

Пусть скорость велосипедиста равна х километров в час. Тогда скорость мотоциклиста равна (х + 15) километров в час. За 2,5 часа мотоциклист проехал:

2,5(х + 15) километров.

За 4 часа велосипедист проехал:

4х километров.

Составим уравнение:

2,5(х + 15) = 4х.

Решим уравнение и найдем неизвестное х:

2,5х + 37,5 = 4х.

1,5х = 37,5.

х = 37,5 : 1,5.

х = 25.

Скорость велосипедиста равна 25 километров в час. Тогда скорость мотоциклиста:

25 + 15 = 40 километров в час.

Расстояние равно:

2,5 * 40 = 100.

ответ: скорость мотоциклиста - 40 км/час, скорость велосипедиста - 25 км/час. Расстояние между городами - 100 километров.

4,8(77 оценок)
Ответ:
Swaggygirl
Swaggygirl
28.02.2020
1) Найдите точку минимума функции у = х³ - 2х² + х - 2

Находим производную функции, как производную суммы:  ( u + v )' = u' + v' . И приравниваем его к нулю, так как в экстремумах производная равна нулю.

у' = ( х³ - 2х² + х - 2 )' = ( х³ )' - ( 2х² )' + ( х )' - ( 2 )' = 3х² - 4х + 1у' = 0   ⇒   3х² - 4х + 1 = 0D = (-4)² - 4•3•1 = 16 - 12 = 4 = 2²x₁ = ( 4 - 2 )/6 = 2/6 = 1/3x₂ = ( 4 + 2 )/6 = 6/6 = 1y'  [ 1/3 ][ 1 ]> xy   __↑__[ x (max) ]__↓__[ x (min) ]__↑__> xЗначит, точка минимума  ⇒  х = 1ОТВЕТ: 12)  Найдите точку максимума функции  у = 9 - 4х + 4х² - х³у' = - 4 + 8х - 3х²  ;   у' = 0- 4 + 8x - 3х² = 03x² - 8x + 4 = 0D = (-8)² - 4•3•4 = 64 - 48 = 16 = 4²x₁ = ( 8 - 4 )/6 = 4/6 = 2/3x₂ = ( 8 + 4 )/6 = 12/6 = 2y'  [ 2/3 ][ 2 ]> xy   __↓__[ x (min) ]__↑__[ x (max) ]__↓__> xЗначит, точка максимума ⇒  х = 2ОТВЕТ: 23)  Найдите точку минимума функции  у = х³ - 3,5х² + 2х - 3у' = 3х² - 7х + 2  ;   у' = 0   ⇒3х²- 7х + 2 = 0D = (-7)² - 4•3•2 = 49 - 24 = 25 = 5²x₁ = ( 7 - 5 )/6 = 2/6 = 1/3x₂ = ( 7 + 5 )/6 = 12/6 = 2y'  [ 1/3 ][ 2 ]> xy   __↑__[ x (max) ]__↓__[ x (min) ]__↑__> xЗначит, точка минимума  ⇒  х = 2ОТВЕТ: 24)  Найдите точку максимума функции  у = х³ + х² - 8х - 7у' = 3х² + 2х - 8  ;   у' = 0   ⇒3х² + 2х - 8 = 0D = 2² - 4•3•(-8) = 4 + 96 = 100 = 10²x₁ = ( - 2 - 10 )/6 = - 12/6 = - 2x₂ = ( - 2 + 10 )/6 = 8/6 = 4/3y'  [ - 2 ][ 4/3 ]> xy  ___↑___[ x (max) ]__↓__[ x (min) ]__↑__> xЗначит, точка максимума  ⇒  х = - 2ОТВЕТ: - 25)  Найдите точку минимума функции  у = х³ - 4х² - 3х - 12у' = 3х² - 8х - 3  ;   у' = 0  ⇒3х² - 8х - 3 = 0D = (-8)²- 4•3•(-3) = 64 + 36 = 100 = 10²x₁ = ( 8 - 10 )/6 = - 2/6 = - 1/3x₂ = ( 8 + 10 )/6 = 18/6 = 3y'  [ - 1/3 ][ 3 ]> xy  ___↑__[ x (max) ]__↓__[ x (min) ]__↑__> xЗначит, точка минимума  ⇒  х = 3ОТВЕТ: 36)  Найдите точку максимума функции  у = х³ + 8х² + 16х + 3у' = 3х² + 16х + 16  ;   у' = 0   ⇒3х² + 16х + 16 = 0D = 16² - 4•3•16 = 16•( 16 - 12 ) = 16•4 = 4²•2² = 8²x₁ = ( - 16 - 8 )/6 = - 24/6 = - 4x₂ = ( - 16 + 8 )/6 = - 8/6 = - 4/3y'  [ - 4 ][ - 4/3 ]> xy   __↑__[ x (max) ]__↓__[ x (min) ]__↑___> xЗначит, точка максимума  ⇒  х = - 4ОТВЕТ: - 47)  Найдите точку минимума функции  у = х³ + х² - 16х + 5у' = 3х² + 2х - 16  ;   у' = 0   ⇒3х² + 2х - 16 = 0D = 2² - 4•3•(-16) = 4•( 1 + 48 ) = 4•49 = 2²•7² = 14²x₁ = ( - 2 - 14 )/6 = - 16/6 = - 8/3x₂ = ( - 2 + 14 )/6 = 12/6 = 2y'  [ - 8/3 ][ 2 ]> xy  __↑__[ x (max) ]__↓__[ x (min) ]__↑___> xЗначит, точка минимума  ⇒  х = 2ОТВЕТ: 28)  Найдите точку максимума функции  у = х³ + 4х² + 4х + 4у' = 3х² + 8х + 4  ;   у' = 0   ⇒3х² + 8х + 4 = 0D = 8² - 4•3•4 = 64 - 48 = 16 = 4²x₁ = ( - 8 - 4 )/6 = - 12/6 = - 2x₂ = ( - 8 + 4 )/6 = - 4/6 = - 2/3y'  [ - 2 ][ - 2/3 ]> xy  __↑__[ x (max) ]__↓__[ x (min) ]__↑___> xЗначит, точка максимума  ⇒  х = - 2ОТВЕТ: - 29)  Найдите точку минимума функции  у = х³ - 4х² - 8х + 8у' = 3х² - 8х - 8   ;   у' = 0   ⇒3х² - 8х - 8 = 0D = (-8)² - 4•3•(-8) = 64 + 96 = 160 = (4√10)²x₁ = ( 8 - 4√10 )/6 = (4 - 2√10)/3x₂ = ( 8 + 4√10 )/6 = (4 + 2√10)/3y'  [ (4-2√10)/3 ][ (4+2√10)/3 ]> xy  ___↑__[ x (max) ]↓[ x (min) ]↑___> xЗначит, точка минимума  ⇒  х = (4+2√10)/3ОТВЕТ: (4+2√10)/310)  Найдите точку максимума функции  у = х³ + 5х² + 3х + 2 у' = 3х² + 10х + 3  ;   у' = 0  ⇒3х² + 10х + 3 = 0D = 10² - 4•3•3 = 100 - 36 = 64 = 8²x₁ = ( - 10 - 8 )/6 = - 18/6 = - 3x₂ = ( - 10 + 8 )/6 = - 2/6 = - 1/3y'  [ - 3 ][ - 1/3 ]> xy  __↑__[ x (max) ]__↓__[ x (min) ]__↓__> xЗначит, точка максимума  ⇒  х = - 3ОТВЕТ: - 3
4,5(67 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ