Объяснение:
2x-5= 2*(-3,4)-5= -6,8-5= -1,8
В решении.
Объяснение:
Решить уравнение:
1) х² - 6х + 8 = 0
D=b²-4ac =36 - 32 = 4 √D=2
х₁=(-b-√D)/2a
х₁=(6-2)/2
х₁=4/2
х₁=2;
х₂=(-b+√D)/2a
х₂=(6+2)/2
х₂=8/2
х₂=4;
2) х² + 4х - 12 = 0
D=b²-4ac =16 + 48 = 64 √D=8
х₁=(-b-√D)/2a
х₁=(-4-8)/2
х₁= -12/2
х₁= -6;
х₂=(-b+√D)/2a
х₂=-4+8)/2
х₂=4/2
х₂=2.
3) х² + х + 2 = 0
D=b²-4ac = 1 - 8 = -7
D < 0
Уравнение не имеет действительных корней.
4) 12х² - 7х + 1 = 0
D=b²-4ac = 49 - 48 = 1 √D=1
х₁=(-b-√D)/2a
х₁=(7-1)/24
х₁=6/24
х₁=1/4
х₂=(-b+√D)/2a
х₂=(7+1)/24
х₂=8/24
х₂=1/3;
5) 2х² - 3х + 7 = 0
D=b²-4ac = 9 - 56 = -47
D < 0
Уравнение не имеет действительных корней.
6) 7х² - 8х + 1 = 0
D=b²-4ac = 64 - 28 = 36 √D=6
х₁=(-b-√D)/2a
х₁=(8-6)/14
х₁=2/14
х₁=1/7;
х₂=(-b+√D)/2a
х₂=(8+6)/14
х₂=14/14
х₂=1.
2. Все квадратные трёхчлены, имеющие корни, можно разложить на множители.
3. х² - 6х + 8 = (х - 2)(х - 4);
х² + 4х - 12 = (х + 6)(х - 2);
12х² - 7х + 1 = 12(х - 1/4)(х - 1/3);
7х² - 8х + 1 = 7(х - 1/7)(х - 1).
sin(πSinx)=-1
πsinx=-π/2+2πn, где n∈Z
sinx=-1/2+2n, где n∈Z, итак, n целое, но в данном случае, если n=-1 и меньше, то синуса не существует, так же как и при n равном 1 и больше единицы, поэтому n может принимать только значение, равное 0;
Если же n=0, то sinx=-1/2, тогда х=((-1)ⁿ+¹ ) π/6+πn; где n∈Z
при n=0, имеем х∉указанному отрезку
при n=1 x=7π/6;
при n=2 х=11π/6
при n=3 х∉Указанному отрезку, итак, у нас получились 2корня, которые принадлежат указанному промежутку . ЭТо
7π/6 и 11π/6
ответ Два корня.
ответ:2*(-3.4)-5= -7.2-5=-12.2
Объяснение:обьяснил