М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Камила070
Камила070
23.07.2022 16:42 •  Алгебра

2) Розв'язати нерівність (x+1)(x2-x+1)-x(x2+4)»9

👇
Открыть все ответы
Ответ:
21062017
21062017
23.07.2022
Выясним вид и расположение графика функции y=-x²+4 относительно начала координат.
График - парабола. Поскольку коэффициент перед х² отрицательный, то она располагается ветвями вниз, следовательно большинство её значений отрицательны.
Далее, y(-x) = -(-x)²+4 = -x²+4 = y(x), следовательно, функция четная и её график будет симметричен относительно оси Y
Чтобы узнать, принимает ли функция неотрицательные значения, приравняем y нулю. Мы получим уравнение -х²+4=0. Если существуют действительные корни этого уравнения, то они будут точками, в которых график функции пересекает ось Х, а при значениях х, находящихся между этими корнями функция будет положительной.
-х²+4=0; х²=4 → х=√4
Корнями будут х₁=-2, х₂=2
Итак, график функции - парабола, направленная ветвями вниз, симметричная относительно оси Y и пресекающая ось Х в точках -2 и 2.
В силу симметрии этих точек и характера функции мы можем утверждать, что её максимум достигается в точке х = (-2+2)/2 = 0.
Значение максимума у(0) равно -0²+4 = 4.
Понятно, что функция принимает отрицательные значения вне интервала между корнями, т.е. x<-2 и x>2.
В другой форме записи x ∈ (-∞;-2) ∪ x ∈ (2;∞)

График функции дан во вложении.

А) постройте график функции y=-x^2+4 б) при каких значениях x функция принимает отрицательные значен
4,8(2 оценок)
Ответ:
Сразу заметим, что f(x) - непрерывна и не имеет асимптот. Найдем ее промежутки возрастания и убывания.
f'(x)=4/3*(3-x)^3+4x/3*3(3-x)^2*(-1)=(3-x)^2*(4/3*(3-x)-4x/3*3)=(x-3)^2*(4-16/3*x)=-16/3*(x-3)^2*(x-3/4)
Нули производной: x=3, x=3/4.
f'(x)      +                                 -                                   -
 3/4  3 >x 
f(x)    возрастает            убывает                       убывает
Отсюда следует, что максимум функции достигается при x=3/4.
При пересечении функции прямой y=m будет более одной точки в том случае, когда прямая y=m лежит ниже максимума f(x) - так она будет пересекать f(x) ровно в двух точках. Отсюда m < f(3/4)
f(3/4)=4/3*3/4*(3-3/4)^3=(9/4)^3=729/64
m<729/64
4,7(32 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ